QoS in B-ISDN (ATM) networks

Andrea Bianco
Telecommunication Network Group
firstname.lastname@polito.it
http://www.telematica.polito.it/

Layered model
- Used for traffic characterization and QoS definition
 - Call level
 - Burst level
 - Cell level

Call level
- Long-term temporal dynamics
- The traffic occupies network resources for the full call duration
- Traffic characterization
 - Call attributes
 - Call model
- Quality of service

Burst level
- Medium-term temporal dynamics
- ON-OFF periods
 - Traffic characterization:
 - OFF periods stochastic duration
 - Burst length stochastic duration
 - Bit rate during ON periods (peak rate assumed)
- Quality of service undefined

Burst level
- Burstiness: $\beta = \frac{H+K}{H}$
- Activity coefficient: $\alpha = \frac{1}{\beta}$
- Average bit rate: $B_M = \alpha B_P$
- Bit rate variance: $\sigma^2_B = B_M(B_P - B_M)$
Cell level

- **Traffic characterization:**
 - Inter-arrival time distribution
 - Distribution of the number of cells generated in a measurement period T
 - Often less information is accepted (also for complexity reasons)
 - Inter-arrival expected value and variance
 - From the average inter-arrival time the average bit-rate can be computed
 - Quality of service:
 - reliability
 - Cell loss probability
 - Cell error probability
 - Cell mis-insertion probability (cells belonging to other VC erroneously inserted in the current VC)
 - Expected value, variance and maximum cell delay

Standard

- A traffic contract was defined
 - Traffic characterization
 - Accurate
 - Uniquely verifiable
 - Simple, to be useful for the computation of network resources that should be allocated to the connection
 - QoS guarantee
 - Parameters defined in the ITU-T I.356 recommendation

Standard: traffic characterization

- Identification of cell flows within a connection
- Definition of traffic intrinsic parameters
 - Traffic nominal characteristics in absence of interfering traffic
- Tolerance: accepted variations with respect to nominal characteristics
 - CDVT: Cell Delay Variation Tolerance
- Conformance definition
 - GCRA algorithm (Generic Cell Rate Algorithm)

Standard:

- Connection starting time
- Connection ending time
- 1/PCR (cell/s)
- MBS (number of cells)
- Connection duration
- SCR = number of cells / connection duration
** Relation between SCR and IBT **

Ideal arrival process at SCR, used as a reference

** GCRA: **

** Generic Cell Rate Algorithm **

- Standard algorithm for conformance verification (policing) and for traffic adaptation (shaping)
- **PARAMETERS:**
 - T = nominal cell inter-arrival time
 - τ = tolerance or maximum accepted variation with respect to nominal spacing
- **VARIABLES:**
 - T_a = real cell arrival time
 - TAT = theoretical cell arrival time

** Conformance verification **

- Statistical multiplexing stages (switching nodes) modify the original traffic pattern due to unpredictable queuing delays
- Cell Delay Variation Tolerance (over SCR and/or PCR)
- CDVT
 - Maximum acceptable ahead time at an interface with respect to the expected arrival time
 - Similar to IBT, but to cope with multiplexing delays, not to allow some variability in the user flow
- If GCRA is checking the PCR
 - $T=1/PCR$
 - $\tau=CDVT_{PCR}$
- If GCRA is checking SCR
 - $T=1/SCR$
 - $\tau=IBT + CDVT_{SCR}$

** Quality of service: standard ITU-T I.356 **

- **CTD (Cell Transfer Delay)**
 - Average time between the transmission of the first bit and the reception of the last bit
- **2-pt CDV (Two point Cell Delay Variation)**
 - Variation of cell delivery time
 - Difference between the 10^{-8} inferior and superior quantile of CTD
- **CLR (Cell Loss Ratio)**
 - Cell loss probability
 - Ratio between lost cells and transmitted cells
 - $CLR_0 \leq CLR_{10^{-8}}$
- **CER (Cell Error Rate)**
 - Ratio between cells with detected errors and the total number of cells
- **CMR (Cell Misinsertion Rate)**
 - Ratio between erroneously received cells (cells belonging to other VCs) and the total number of received cells
- **SECBR (Severely Errored Cell Block Ratio)**
Quality of service classes

- Defined through some parameters:
 - CLR
 - CDV
- 4 QOS service classes standardized by ITU-T to satisfy 4 main types of user services:
 - Class 1: STRICT (CLR<0\(+1\))
 - Class 2: TOLERANT (CLR<0\(+1\))
 - Class 3: LIMITED (CLR<0\)
 - Class U: BEST EFFORT (does not admit negotiation of any parameter)

Transfer modes

- ITU-T: internationally recognized standardization body
- ATM forum: de-facto standardization body
- Transfer modes defined
 - By ITU-T as ATC (ATM Transfer Capability)
 - By ATM Forum as Service Class
- Transfer mode distinguished through definition of:
 - Cell flows to which guarantees are provided
 - Parameters to characterize flows
 - Conformance verification applied to flows
 - Adopted control functions

Transfer modes

- Do not define QoS requirements
 - Each transfer mode can be associated (almost) with any negotiable QoS
- Five main transfer modes:
 - CBR/DBR: Constant/Deterministic Bit Rate
 - VBR/SBR: Variable/Statistical Bit Rate
 - UBR: Unspecified Bit Rate
 - ABR: Available Bit Rate
 - ABT: ATM Block Transfer
- ABT ed ABR use RM cells to control flow cell emission rate

Transfer modes

- Define ATM layer services and the associated QoS
- To each service, a set of admissible QoS parameters values is defined
- Network operators may add other QoS parameter values beyond the standardized ones

Transfer modes: DBR

- Characterization:
 - PCR over aggregated flow (data+OAM+RM) or
 - PCR over data+OAM flow
 - Does not use the CLP bit
- Offers static bit rate equal to the negotiated PCR (possibly more than PCR)
- Use a single instance of GCRA
- Isochronous services or fixed bit rate services
- CAC over B_p (or B_{eq})
- Associated with service class 1

Transfer modes: SBR

- Characterization (3 flavor):
 - SBR1: PCR, SCR and MBS over aggregated flow
 - SBR2: PCR over all data cells (0+1), SCR (0), MBS (0). Tagging over non conformant cells not admitted
 - SBR3: like SBR2, but tagging of non conformant cells is admitted
- Offer a variable bit rate, normally ranging between PCR e SCR to satisfy source needs, not network needs
- Always two instances of GCRA are used
- Isochronous service or data services with variable bit rate
- CAC over B_p, B_{eq}, B_{eq} or exploiting measurements
 - Allocated bandwidth must be guaranteed through a proper scheduling algorithm
- Typically, loss rate and delays are negotiated
QoS in B-ISDN Networks

Transfer modes: UBR

- Standardized only by ATM Forum
 - ITU-T: UBR can be obtained as DBR with U class of service
- Characterization:
 - PCR over aggregated flow
- No conformance definition
- No bit rate allocation, no QoS guarantees on delays and loss probabilities
- Switches exploit cell discarding techniques
 - To reduce segmentation negative effects
 - "Useless" traffic transported
 - Loss priority in buffers

UBR: cell discarding

- Selective Cell Discarding:
 - Drop cells belonging to a (higher layer) packet/message for which at least another cell was already dropped
 - Packet identification is easy for AAL5
 - Some "useless" traffic due to head of packets (already transmitted cells)
- Early Packet Discarding:
 - Discard full messages (entire set of cells) when the buffer occupancy exceeds a given threshold
 - Higher layer packets segmented in cells are either entirely transferred or dropped,
 - When the buffer occupancy exceeds the threshold, cells belonging to packets already partially transmitted are stored and later transmitted, cells belonging to new packets are dropped
 - Need to set up threshold value properly depending on (average?) packet size and buffer size

Other cell discarding mechanisms

- Use of the EFCI bit in the cell header PT field:
 - Used to indicate congestion to protocol layers higher than ATM
 - It is assumed that higher layer protocols react to congestion signals
- Cell discarding based on priority:
 - If buffer size occupancy becomes critical (e.g.: full buffer or buffer occupancy over threshold) low priority cells (CLP=1) are discarded
 - Divided in two categories:
 - Non protective
 - High priority may suffer losses due to low priority packets previously stored
 - Protective (full separation between high and low priority)
 - Need to control cell generation process

Transfer modes: ABR

- ABR (Available Bit Rate) offers an allocated bit rate between PCR and MCR depending on network resources availability; goals
 - Full bit rate utilization
 - Fair resource partitioning
- The network explicitly signals to sources the transmission bit rate
- It provide small CLR (ideally zero CLR) if source adapt their rate to network indication

Transfer modes: ABR

- Characterization:
 - PCR over aggregate flow (data+OAM+RM)
 - MCR (Minimum Cell Rate) over aggregated flow (data+OAM+RM)
- Conformance definition based on GCRA with parameter T adapted to network signals
- Source behavior completely specified in standards
- Node algorithms, as usual, not standardized

Transfer modes: ABR

- Uses in-band RM cells (forward e backward) to obtain a continuous control of source emission bit rate (cooperating sources)
ABR: source behavior

• An ABR source
 – Starts transmission at a negotiated rate (ICR)
 – Periodically inserts RM forward cells in cell flow
 – When it receives an RM backward cell it adapts the transmission rate to the minimum value contained in the cell
 – If no RM backward cells are received, the source slows down until it stops
 – If the source is silent more than a given period, it starts transmitting at the negotiated rate

ABR: node behavior

• Three possibility to control source emission rate:
 – EFCI (Explicit Forward Congestion Indication):
 • Equivalent to the congestion notification used in frame relay
 • 1 control bit to signal congestion
 • It is the simplest but less efficient mechanism
 • Destination translate EFCI bits into a CI bit in backward RM cells
 – RRM (Relative Rate Marking): nodes send on backward RM cell a ternary information through two bits (CI,NI) setting (increase rate, keep rate, decrease rate)
 – ER (Explicit Rate): nodes send on backward RM cells the rate at which a source can send cells
• Nodes overwrite info in RM cells only if constraining more source behavior

ABR: node behavior

• When adopting EFCI and RRM schemes, nodes normally control congestion by monitoring buffer occupancy
• Threshold mechanism:
 – Single FIFO, occupancy based (positional)
 • Hysteresis
 – One FIFO per VC
 – Derivative
 – Integrative
• ER: nodes control congestion measuring traffic load (background, ABR) and the number of active ABR connections

ABR: RM cell main fields

• Protocol type (ABR, ABT)
• Direction (Forward, Backward)
• NI (No-Increase), CI (Congestion Indication) bits
• ECR: Explicit Cell Rate
• CCR: Current Cell Rate
• MCR: Minimum Cell Rate
• ...

ABR: some parameters

• Parameters negotiated when opening the VC
 – PCR: Peak Cell Rate
 – MCR: Minimum Cell Rate
 – ICR: Initial Cell Rate
 – Source start sending at ICR. Ranges between PCR and MCR
 – RIF: Rate Increase Factor
 – Negative power of 2, referring to PCR
 – RDF: Rate Decrease Factor
 – Negative power of 2, referring to CCR
 – TBE: Transient Buffer Exposure
 – Amount of data that can be transmitted without receiving backward RM cells

ABR: RRM

• Two control bits:
 – CI (Congestion Indication)
 – NI (Not Increase)

<table>
<thead>
<tr>
<th>CI</th>
<th>NI</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Increase</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Keep</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Decrease</td>
</tr>
</tbody>
</table>

With respect to CCR (Current Cell Ratio)

• Two parameters are negotiated: RDF e RIF (Rate Decrease/Increase Factor)
• To increase rate: CCR=CCR+PCR·RIF
• To decrease rate: CCR=CCR·(1-RDF)
• Nodes cannot flip to 0 a bit set to 1 by other nodes!
ABR: example of an RRM algorithm

- Not standardized
- Measure Q_i, queue length at i, and $D(Q_i) = Q_i - Q_{i-1}$
- Define two thresholds: L, H, with $L < H$
 - Positional control
 - $Q_i < L$ \Rightarrow $NI=0$ $CI=0$
 - $L < Q_i < H$ \Rightarrow $NI=1$ $CI=0$
 - $H < Q_i$ \Rightarrow $CI=1$
 - Positional - Derivative control
 - $\forall Q_i$ $D(Q_i) < \beta$ \Rightarrow $NI=0$ $CI=0$
 - $\exists Q_i$ $\beta < D(Q_i)$ \Rightarrow $CI=1$
 - $Q_i < L$ \Rightarrow $\beta < D(Q_i) < 0$ $NI=0$ $CI=0$
 - $Q_i < L$ $0 < D(Q_i) < \beta$ $NI=0$ $CI=0$
 - $L < Q_i < H$ \Rightarrow $\beta < D(Q_i)$ $NI=1$ $CI=0$
 - $H < Q_i$ \Rightarrow $0 < D(Q_i) < \beta$ $NI=0$ $CI=0$

ABR: ER

- Example of an algorithm (not standardized): ERICA
 - DATA:
 - C: link bit rate
 - Available bit rate
 - Bit rate available to ABR connections, i.e., subtract from link capacity the bit rate devoted to CBR and VBR VCs
 - Target bit rate: $R_T = 0.98 \cdot C$
 - To avoid oscillations
 - OUTPUT:
 - Fair share bit rate: B_{FSi}

ABR: ERICA

- Once the target bit rate is set, e.g. $R_T = 0.95 \cdot C$
- Estimate
 - The number of active ABR connections (N_{ABR})
 - Background traffic (L_B)
 - ABR connection current load (L_{ABR})
- Compute:
 - Available bit rate for i: $B_{AVRi}=R_T-L_B$
 - B_{AVRi} \leq N_{AVR}
 - L_B+L_{AVR} $\leq L_{ABR}$
 - $B_{FSi}=\max(B_{FSi}, B_{VCi})$
- The maximum allows to target a max-min fair allocation
- B_{FSi} is written in the ER field only if smaller than the current value

Transfer modes:

ABT (ATM Block Transfer)

- Standardized only by ITU-T
- Defines a block of cells as a group of cells “enclosed” by two RM cells (or preceded by one RM cell)

ABT

- Two flavours:
 - IT (Immediate Transmission):
 - Send a block of cells at a constant bit rate, equal to BCR
 - Each node either discards or accepts the full block
 - Rather inefficient when crossing several nodes
 - Exploits part of the available bandwidth for short periods
 - Acceptance can be done looking at bit rate only, at buffer only, or at both
 - DT (Delayed Transmission):
 - Can re-negotiate block transfer rate, but need to wait for a positive answer from the network
 - Continuous negotiation, without exploiting signalling resources
Exercise

• Discuss a possible architecture to support ATM transfer modes
 – Queuing structure
 – Schedulers
• Start by considering each transfer mode separately