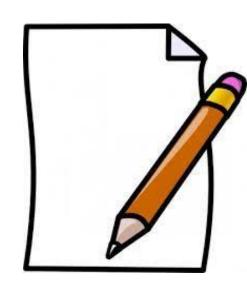
Introduction to the labs

Andrea Bianco, Paolo Giaccone http://www.telematica.polito.it/

Labs

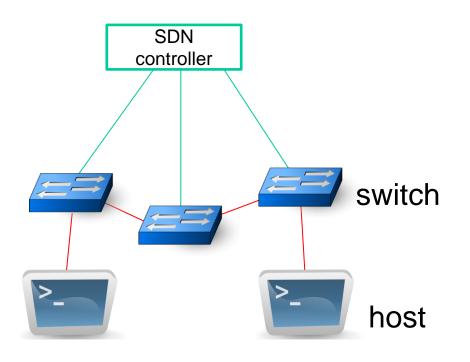

- Lab #1
 - 3 hours
 - Configuration
 - SDN and network routing
- Lab #2
 - 3 hours
 - Performance
 - QoS support: mainly scheduling
- Lab #3
 - 3 hours
 - Detailed analysis and implementation
 - Simulation of algorithms
- It is possible to work on the labs at home
 - assistance is provided only in presence during the lab
- The exam starts with a question on the lab!

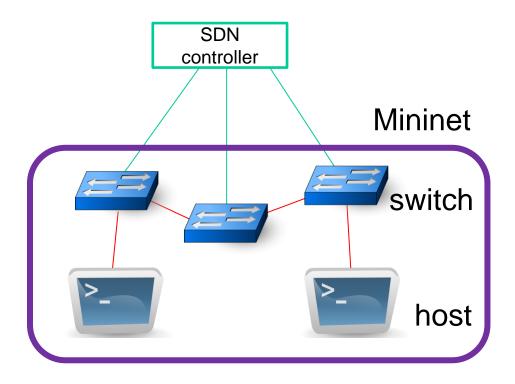
Lab logistics

- LED2 Dept. of Electronics and Telecommunications
 - 2nd floor south "scavalco" on C.so Castelfidardo
 - https://www.polito.it/mappe?bl_id=TO_CIT11&fl_id=XP02&rm_id=065
- Wednesday 16:00-19:00 in LED2
 - November 19th, December 3rd, December 10th
- Please arrive 5 minutes earlier, so you can start the lab on time
- Join your group as listed here
 - https://docs.google.com/spreadsheets/d/1LOV8OxxxNcgDrU_v1TxjosKnL oRt8vxEPNXNrOCFZFY/edit?gid=0#gid=0
- Will use crownlabs
 - Working in a virtual environment
 - Using a Linux Virtual Machine
 - Using Linux terminal and shell commands
 - (see notes available as teaching material)

Lab detailed instructions

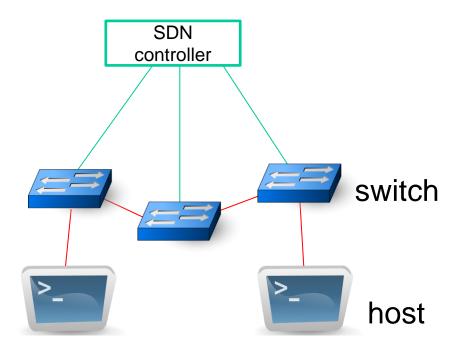
- 3 pdf files are provided, one for each lab
- Print the pdf at home and bring it into the lab
 - Better one copy for each student
- Bring pen and papers to take notes
 - Required to be able to follow the lab
 - Needed to discuss labs during examination
 - Notes can be taken on tablet or PC

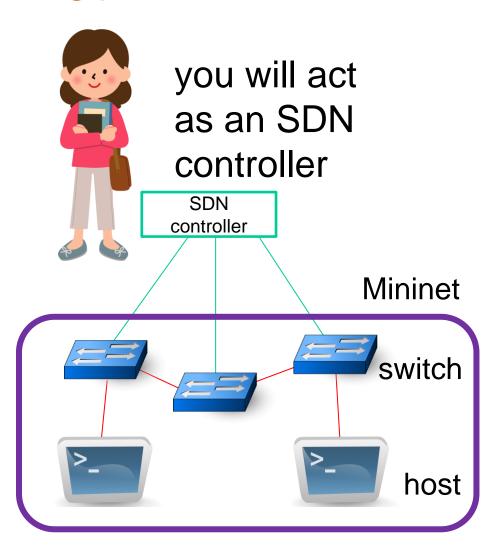

Software tools


- In crownlabs VM
 - Linux shell commands
 - Browser
 - Text editor
 - Linux network applications
 - Traffic generators

- For the first two labs
 - Main software tool: Mininet
 - SDN Network emulator

Mininet


Network emulator



Mininet

Network emulator

Mininet

- It is a SDN emulator
 - Permits to create a topology containing nodes
 - host
 - SDN switch
- Linux container/process for each node
- Command line interface CLI
 - global commands for the emulator
 - local commands to access/configure nodes

Mininet global commands

- In the selected/created topology
 - nodes display nodes in the current topology
 - h1 h2 s1
 - h1 -> host 1
 - s1 -> switch 1
 - links display links
 - h1-eth0<->s1-eth1
 - net display a summary of all the nodes and links
 - h1 h1-eth0:s1-eth1
 - dump dump information about all nodes
 - <Host h1: h1-eth0:10.0.0.1 pid=123456>

Mininet local commands

- local commands for the nodes
 - if the first typed string is a host, switch or controller name, the command is executed on that node
- h1 ifconfig provides the list of the network interfaces attached to h1
- h1 ping h2 sends ICMP packets from h1 to h2
- h1 iperf3 –c 10.0.0.1 uses iperf to test the bandwidth towards 10.0.0.1

 sh allows to run a (Linux) command outside mininet, while mininet is running; e.g., mininet> sh Is

Network monitoring/performance tool

- Ping test host reachability
 - Exploits ICMPs echo (request and reply) messages
 - Measures the average round trip time
 - PING www.ietf.org (64.170.98.32) 56(84) bytes of data.
 - 64 bytes from mail.ietf.org (64.170.98.32): icmp_seq=0 ttl=66 time=169 ms
 - 64 bytes from mail.ietf.org (64.170.98.32): icmp_seq=1 ttl=66 time=172 ms
 - 64 bytes from mail.ietf.org (64.170.98.32): icmp_seq=2 ttl=66 time=174 ms
 - 64 bytes from mail.ietf.org (64.170.98.32): icmp_seq=3 ttl=66 time=177 ms
 - --- www.ietf.org ping statistics ---
 - 4 packets transmitted, 4 received, 0% packet loss, time 3008ms
 - rtt min/avg/max/mdev = 169.290/173.427/177.398/2.994 ms, pipe 2

Network monitoring/performance tool

- iperf3 test the available bitrate between two hosts
- client server application
 - client: generates the traffic (TCP/UDP)
 - server: receives the traffic (TCP/UDP)
- iperf3 –c dest_IP run the test as client
- iperf3 -s run the test as server
 - by default, each host is already running it in background
- many options are available: iperf3 --help

Initial steps

- Navigate to crownlabs: https://crownlabs.polito.it
- Select Login @Polito
- Select PoliTOSSO at the bottom
- Use your University credentials
- Select the Computer Network Design workspace
- Create the VM instance
- Connect to the VM instance
- •
- Execute lab
- •
- STOP and DELETE the VM instance at the end (transferring data if needed)!!!

Lab#1 – Initial step

Proceed step by step. Do not skip!

- Shell command overview
 - Shortcuts

- Become familiar with Mininet and its commands
 - two hosts and one (software) Openflow switch
 - understand the performance of software switches

Lab #1 – Single switch

- Topology discovery
 - in terms of node graph and IP addresses
- Test connectivity
- Add the proper match-action rules in the flow table to route the traffic
 - based on source port only
 - based on destination port only
- Observe the traffic through tshark
- Remind the notation: IP 1.2.3.4/24 = 1.2.3.4/255.255.255.0

Lab #1 – Linear two switches

- Topology discovery
 - in terms of node graph and IP addresses
- Test connectivity
- Fix the routing

Lab #1- Mesh topology

- Topology discovery
 - in terms of node graph and IP addresses
- Test connectivity and fix the routing
- Multipath routing
 - route UDP and TCP flows between the same pairs of hosts on different paths
- Dynamic routing
 - Flow rerouting from main path to a backup
 - "flow-mod messages" issued "by the controller"
 - investigate whether the sequence of the messages matters or not for a completely transparent rerouting process (i.e., no losses)
- Fault-tolerant rerouting (Optional)
 - detect a link failure and apply the backup path

Lab #2

- Analyze performance of various schedulers
 - FIFO, Round Robin, Weighted Round Robin, Priority
- In different scenarios
 - Underload and overload
 - Two flows
 - single bottleneck
 - Multiple flows
 - Dingle bottleneck
 - Mesh network
- Compare with max min fair solution
- Have a look at transient behaviour (optional)

Lab #3

- Analyze various schedulers
 - RR, DRR, WRR; Virtual Clock, WFQ ...
- Interactive python environment
- Need to set up some parameters to understand scheduler behaviour
- Write some code to customize scheduler behaviour