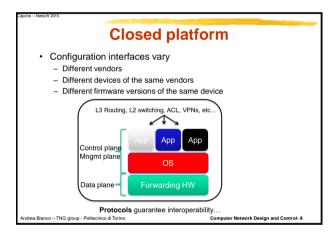
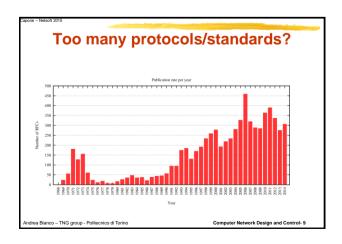
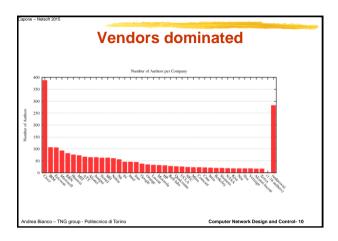
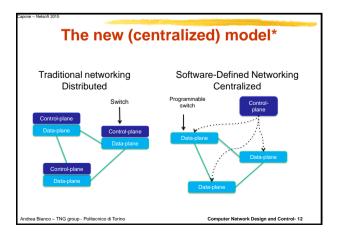

# **Traditional computer networks** · Control plane - Distributed algorithms Topology discovery, topology tracking, route computation, installing forwarding rules, traffic engineering - Seconds time scale, flow time scale Slow process a Bianco – TNG group - Politecnico di Torino

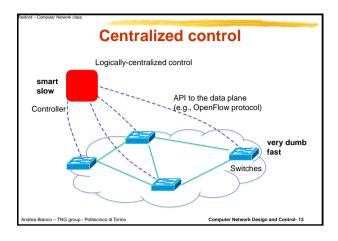

# **Traditional computer networks** · Management plane - Local/global algorithms with coordination · Measurement, configuration, monitoring, protection and restoration - Mostly «human» time scale

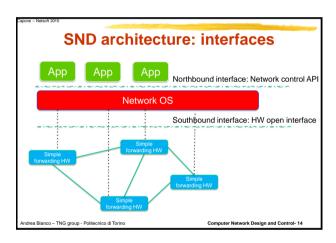

#### **Traditional computer networks**


- - Incredible success (from research experiments to global commercial infrastructure)
  - «In principle» complexity at the edge
    - · «Only» packet forwarding inside
    - Complexity at the edge (SW) enables fast innovation

    - Host running increasingly complex applications (SW)
       Web, P2P, social networks, virtual reality, video streaming
  - Inside the network?
    - Closed equipments, SW and HW intermixed, vendor specific interfaces, many more features beside forwarding, too many protocols
    - · Slow and costly development and management



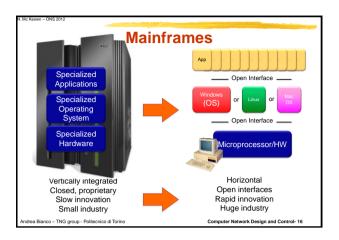



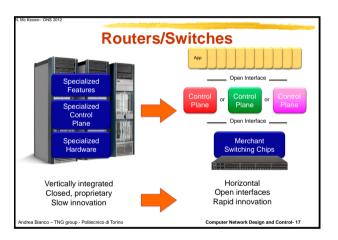






- · "New" key elements
  - Clean interface (API) between data and control plane
  - Logically centralized control plane
    - Control plane out of forwarding devices
    - Control plane (SW) may run on general purpose HW
    - Global network view
    - SDN controller or Network Operating Systems
      - Network programmabilityNew architecture
  - Flow based switching
    - Programmed by the centralized controller
    - · Very flexible flow definition
  - Network applications running on top of NOS





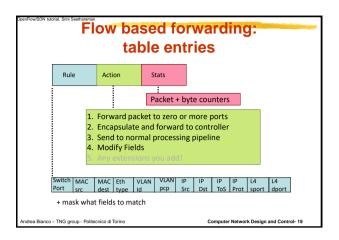



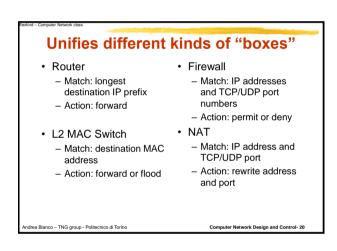

### A Helpful Analogy

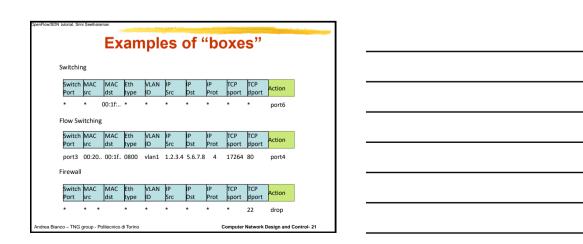
From Nick McKeown's talk "Making SDN Work" at the Open Networking Summit, April 2012

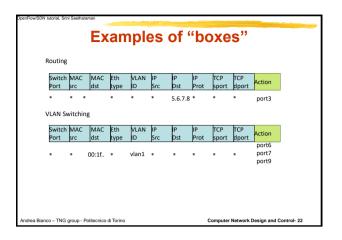
Andrea Bianco – TNG group - Politecnico di Torino

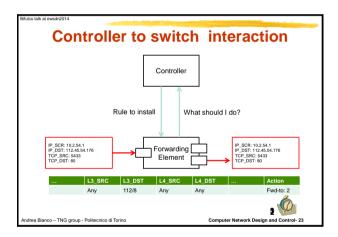


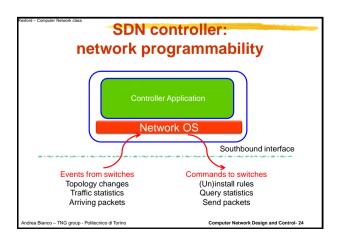




#### Flow-based forwarding\*


- · Protocol-less or protocol-oblivious forwarding
  - Not exactly true (set of predefined fields)
- · Simple packet-handling rules
  - Pattern/rule: match packet header bits
  - Actions: drop, forward, modify, send to controller
  - Priority: disambiguate overlapping patterns





Andrea Bianco – TNG group - Politecnico di Torin



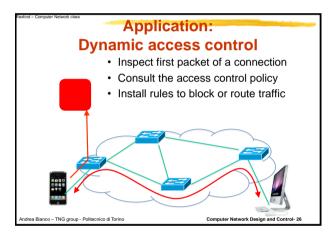


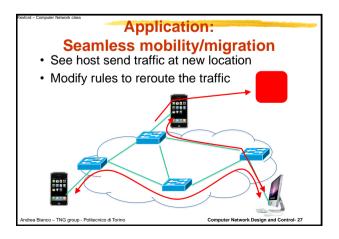


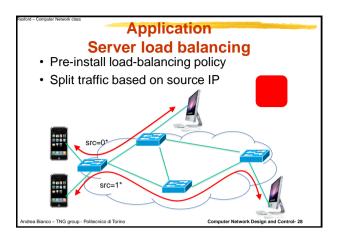




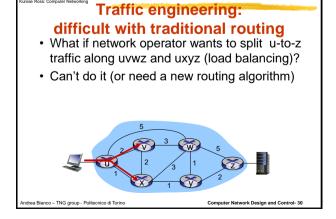




#### - Computer Network clas

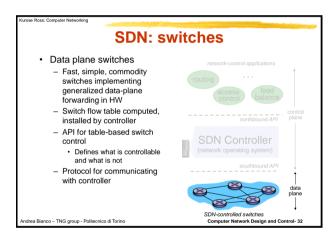

#### **Example of applications**

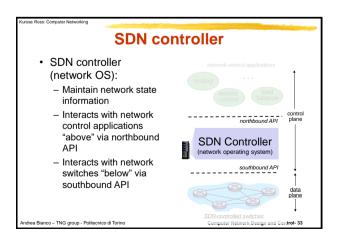

- · Dynamic access control
- Seamless mobility/migration
- · Server load balancing
- · Network virtualization
- · Using multiple wireless access points
- · Traffic engineering
- · Energy-efficient networking
- · Adaptive traffic monitoring
- · Denial-of-Service attack detection

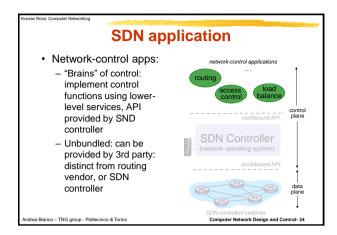
• ......

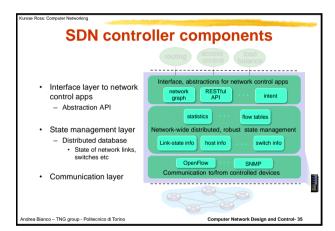

Andrea Bianco – TNG group - Politecnico di Torino







| Kurose Ross: Computer Networking Traffic engil                                                  | neering:                                |
|-------------------------------------------------------------------------------------------------|-----------------------------------------|
| difficult with tradi Hp. Destination based routing                                              | tional routing                          |
| What if network operator wants  u-to-z traffic to flow along uvwz  x-to-z traffic to flow xwyz? |                                         |
| Need to define link weights so tr<br>computes routes (or need a new                             | 0 0                                     |
| Does not work     Modifies many routes                                                          |                                         |
| - Cannot change weights to route ea                                                             | ch individual flow                      |
| Andrea Bianco – TNG group - Politecnico di Torino                                               | Computer Network Design and Control- 29 |














#### SDN: pros and cons · Potential benefits Potential drawbacks - Easier and faster innovation - Performance Overheads - Exploits global network view Traffic enginering Scalability Traffic steering Bottleneck Security - Single point of failure - Interoperability Simpler switches · Less costly · Less power hungry - «Avoids» device misconfiguration - Virtual resource management

#### SDN where?

- · Campus LAN
- · Data center
- · WAN (google) to interconnect data centers
- ISP2
- 5G networks

Andrea Rianco - TNG group - Politecnico di Torino

Computer Network Design and Control- 37

#### The role of the scenario

- Datacenter
  - Very large number of devices
    - Spatially collocated
  - Low and predictable delays between devices
  - Dedicated network for control
    - Out of band control traffic
- ISP/POP
  - Lower number of devices
    - · Spatially distributed
  - High and unpredictable latencies
  - Control and data share the same resources
    - · In band control traffic

Andrea Bianco – TNG group - Politecnico di Torino

Computer Network Design and Control-3

#### Level of aggregation

- Flow Based
- Group Based
- Every flow is individually set up by controller
- Exact-match flow entries
- Flow table contains one entry per flow
- Suited for fine grain control, e.g. campus networks
- One flow entry covers large groups of flows
- Wildcard flow entries
- Flow table contains one entry per category/group of flows
- Suited for large number of flows, e.g. ISPs

Andrea Bianco – TNG group - Politecnico di Torino

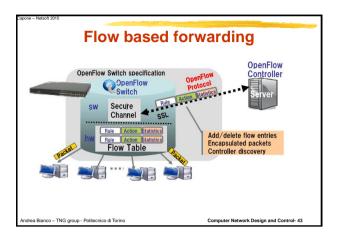
#### Level of aggregation

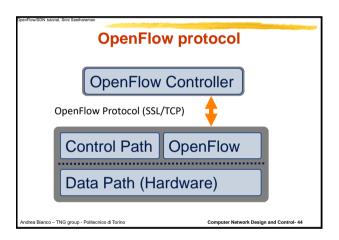
- · High aggregation level
  - Dealing with few large objects
  - Reduced occupation of forwarding table
  - Reduced signaling overhead and controller load
  - Coarse granularity in the control of flow Qos
    - A flow steering moves a large amount of traffic
  - Less elements to deal with for load balancing but more difficult to balance

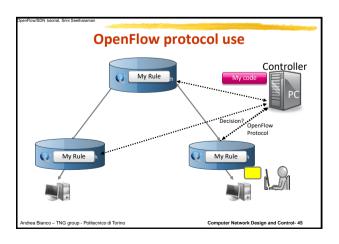
#### Reactive vs. Proactive

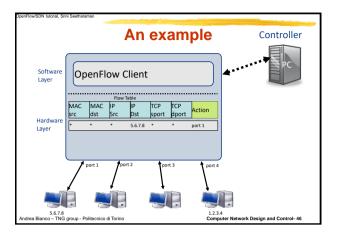
- · Reactive
  - Flow table empty at boot
  - First packet of a flow sent to

  - Controller inserts flow entries
  - Dynamic network
  - Every flow incurs small (?) additional flow setup time
  - Large control traffic
  - Large load on the controller
  - Efficient use of flow table
  - If control connection lost, switch has limited utility


- · Proactive
  - Controller pre-populates flow table in switch at boot
  - Zero additional flow setup


  - Static network
  - Loss of control connection does not disrupt traffic
  - Essentially requires aggregated (wildcard) rules
     Reduced table size


#### **OpenFlow protocol**


Andrea Bianco andrea.bianco@polito.it http://www.telematica.polito.it/

| Pag | L | 1 | 4 |
|-----|---|---|---|
| ıuy |   |   | 7 |

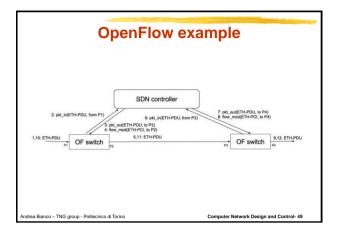








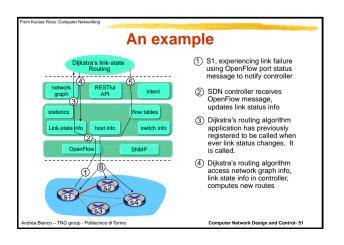
#### **OpenFlow protocol messages**

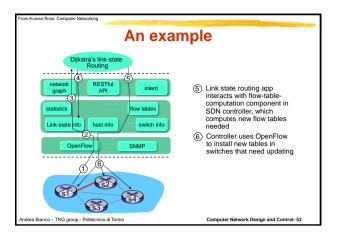

- · Controller-to-switch
  - Initiated by the controller and used to directly manage or inspect the state of the switch
    - Features, Config, Modify State, Read State, Packet Out, Barrier
- Asynchronous
  - Sent to the controller without controller soliciting
    - Packet-in, Flow Removed/Expiration, Port status, Error, ...
- Symmetric
  - Sent without solicitation in any direction
    - · Hello, Echo, Experimenter/Vendor

#### OpenFlow (main) messages

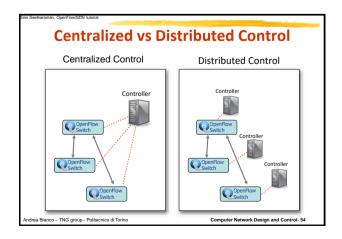
- · Packet\_in
  - Switch to controller
  - Carries a packet copy (possibly only the header)

  - Generated by default in case of table miss
- Packet\_out
  - Controller to switch
  - Send the packet out of a specified port
  - Carries the full packet or the switch buffer id
- Flow\_mod
  - Controller to switch
  - Modify flow tables
  - Carries match-action rule to install


| Pag. | 1 | 6 |
|------|---|---|
| гay. | ı | U |




#### **SDN** architecture in action


Andrea Bianco andrea.bianco@polito.it http://www.telematica.polito.it/

Andrea Bianco – TNG group - Politecnico di Torino

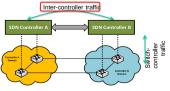




# Distributed controllers Andrea Bianco andrea.bianco@polito.it http://www.telematica.polito.it/



#### Why distributed/multiple controllers? \*


- · To enhance resilience to failures
  - Controller failures can be managed
  - Still to deal with failures in data and control plane
- · To solve scalability issues
  - Faster controllers
    - Limited scaling
  - More proactive rules to reduce number of requests
    - · Limited flexibility
  - Multiple controllers
    - · Permit load balancing to reduce processing load
    - Permit switch migration

#### **Distributed controllers**

- · Virtual topology among controllers
  - to coordinate the operations of the controllers
  - peer, hierarchical, master/slave
- · Network view maintenance
  - different levels of consistency (strong/weak) among the controllers
  - affects the reactivity
  - may lead to temporary rule conflicts

#### Control plane in distributed controllers Switch-controller (Sw-Ctr) traffic

- - Standardized
- Controller-controller (Ctr-Ctr) traffic (East-West-bound interfaces)
  - Proprietary
  - To get consistent view
  - May be non neglibile
  - Critical for reactivity



| Daa | 4   | a |
|-----|-----|---|
| raa | . 1 | 9 |

# Stateful data plane Andrea Bianco

andrea.bianco@polito.it http://www.telematica.polito.it/

#### Stateful SDN dataplane

- · Stateless approach (OpenFlow)
  - Stateless switches, all the states in the controller
  - Limited reactivity due to the (logically) centralized approach
- Stateful approach: OpenState, OpenPacketProcessor
  - (OPP), P4
  - Permit some level of stateful processing (e.g., finite state machines) within switches
    - OpenState adds a state table (IF state A THEN IF state B THEN)
       OpenPacketProcessor: state defined with multiple variables, counters
  - P4 much more flexible (description language of HW behavior)
  - Enabled by new generation of hardware
    - 6.5Tbps Tofino chipset @ Barefoot Networks



#### Toy example · Naive load balancer 0 Traditional SDN Stateful SDN FSM controller Forward up FSM State 0 Stateful switch Stateless switch Computer Network Design and Control- 60

#### Stateful benefits

- · Improve network reactivity
  - Simple local decisions at the switch
  - Reduced controller load
  - Reduced signaling overhead
- · Permits to gracefully move functionalities
  - Balance central vs distributed control
- · Not all switches need to be stateful
  - State positioning or distribution

| Andrea | Rianco - | TNG | aroun - | Politecnico | di | Toring |
|--------|----------|-----|---------|-------------|----|--------|

|  |  |  | _ |
|--|--|--|---|