
POLITECNICO DI TORINO

Lab #2 on Traffic Scheduling

“Computer network design and control” module of
Communication and network systems

Academic year 2024/25

Andrea Bianco, Paolo Giaccone,
Alessandro Cornacchia, Matteo Sacchetto

Version: November 5, 2024

©2024-25



Chapter 1

Laboratory #2

The aim of the lab is to experiment with fairness issues and Quality of Service (QoS) support
through scheduling algorithms, in a Mininet SDN network emulator running on a Virtual Ma-
chine within Crownlabs. The Linux Traffic Control (tc) tool will be used to define and configure
QoS algorithms on the virtual switch interfaces.

The lab’s primary goal is to familiarize students with QoS techniques, their impact on network
performance, and the various scheduling and buffer management algorithms.

1.1 Starting the lab

To start the lab, follow the same procedure outlined in Lab 1 (also provided below for conve-
nience).

For detailed instructions on using Crownlabs, please refer to the guide in Lab 1.

1. Navigate to the Crownlabs website: https://crownlabs.polito.it/

2. Click on the button “Login @Polito”

3. On the web page with the login form, click on the button “PoliTo SSO”, which you can find
at the bottom of the form

4. Log in using your PoliTo credentials (the same credentials you use to access the ”Portale
della didattica”)

5. You will now be logged in to Crownlabs. Here, you will find yourself on the “Dash-
board” tab, and on the UI, you should see the “Communication and Network Systems”
workspace on the left of the user interface (UI)

6. Click on that workspace, and a new section will appear where you will find the VM called
“Lab”

7. Click on the “Create” button, and a new instance of the VM will be created. Once the
creation is complete, the “Connect” button will become active

8. When the “Connect” button is active, click on it, and a new web browser tab will open
where you will be connected to the VM, and you will be able to see the VM desktop

2

https://crownlabs.polito.it/


1.2 Scheduling algorithms

The objective of this section of the lab is to compare the performance of various scheduling
algorithms, including FIFO, Round-Robin (RR), Weighted Round-Robin (WRR), and Strict Pri-
ority, across different network topologies.

1.2.1 Two-flows scenario

Let’s start with a simple topology featuring two traffic flows under varying input loads.

The topology is shown in Fig. 1.1 and consists of two hosts, h1 and h2, serving as traffic gen-
erators, and two hosts, h3 and h4, acting as traffic destinations. The hosts are interconnected
through two switches, s1 and s2, in series. All links between hosts and switches operate at
2 Mbps with a delay of 40 ms. The link between the two switches (denoted as the “bottleneck”),
runs at 1 Mbps with a delay of 10 ms.

In the folder lab2/linear topology, you find the scripts to configure the topology and run
different scheduling algorithms on the output interface connecting s1 to s2:

• fifo.py implements FIFO queuing;

• rr.py implements a Round-Robin (RR) policy;

• wrr.py implements a Weighted Round-Robin (WRR) with weights 4 (for the traffic gen-
erated by h1) and 1 (for the traffic generated by h2);

• strict-priority.py implements a strict priority (SP) scheduler, with the traffic gen-
erated by h1 at the highest priority.

Figure 1.1: Linear topology with two flows

All the commands reported from now on need to be run with the current working directory set
to /home/netlab/Desktop. If you are not sure which directory your terminal is currently
in, you can check it by running pwd. Otherwise, simply run cd /home/netlab/Desktop to
navigate to the correct location.

1.2.1.1 FIFO

Run the first scenario with a FIFO scheduler, using the command:

sudo python -m lab2.linear_topology.fifo

Open the terminal of all four hosts by typing, within the mininet window:

3



xterm h1 h2 h3 h4

NOTE: The window label, e.g., Node:h1, helps identify the host associated with the terminal.

Now start the iperf3 servers at the destination hosts by typing on both terminals of h3 and
h4:

iperf3 -s

The command should print that port 5201 is used to receive the traffic.

To begin with, we consider a single flow scenario. Start UDP traffic from h1 to h3 with 100 kbit/s
load by typing on the terminal of h1:

iperf3 -c 10.0.0.3 -u -t 100 -b 100k

NOTE: that you can stop the source when the results stabilize by pressing CTRL+C.

Explain below what is the meaning of all of the above options (-s, -c, -u, -t, -b). Type man
iperf3 to get this info.

Run the experiments for the various input loads reported below in the table. Recall that when
the results stabilize and the losses are observed (if any), you can stop the experiment. Before
running each experiment, compute the expected throughput (take a note on the way the com-
putation is done). When the run ends, observe the measured throughput (denoted as “Bitrate”)
and losses measured in h3 (not in h1) and fill the below reported table,

Exp. Host Input load [kbit/s] Throughput [kbit/s] Loss probability Expec. Thr. [kbit/s]
1 h1 100
2 h1 500
3 h1 900
4 h1 1200
5 h1 1500

Are the results as expected? If not, why?

4



Now run a scenario with 2 UDP flows (from h1 to h3, and from h2 to h4) for all the combina-
tions of input loads shown in the table below. Before running each experiment, compute the
expected throughput and report it below.

Exp. Host Input load [kbit/s] Throughput [kbit/s] Loss probability Exp. Thr. [kbit/s]

6
h1 100
h2 200

7
h1 400
h2 800

8
h1 400
h2 1200

9
h1 600
h2 1200

Are the results as expected? If not, why?

In summary, what are the most evident effects of the FIFO policy?

1.2.1.2 Round-Robin (RR)

Load the second scenario with two flows and a RR scheduler, using the command:

sudo python -m lab2.linear_topology.rr

Open a terminal for each of the four hosts.

5



Before running each experiment, compute the expected throughput and report it below. Start
the two UDP traffic flows, as shown in the previous scenario, and fill the following table. From
now on, we will not consider the loss probability.

Exp. Host Input load [kbit/s] Throughput [kbit/s] Expected Throughput [kbit/s]

10
h1 100
h2 200

11
h1 400
h2 800

12
h1 400
h2 1200

13
h1 600
h2 1200

Are the results as expected? If not, why?

In summary, what are the most evident effects of the RR policy?

1.2.1.3 Weighted Round-Robin (WRR)

Load this scenario with the following command:

sudo python -m lab2.linear_topology.wrr

Then, open a terminal for each of the four hosts.

Before running each experiment, compute the expected throughput and report it below. Start
the two UDP traffic flows as described in the previous scenario, and complete the table below.

Recall that the weights for the two flows generated by h1 and h2 are set at 4:1, respectively.

6



Exp. Host Input load [kbit/s] Throughput [kbit/s] Expected Throughput [kbit/s]

14
h1 100
h2 200

15
h1 400
h2 800

16
h1 600
h2 800

17
h1 800
h2 800

18
h1 1000
h2 800

Are the results as expected? If not, why?

In summary, what are the most evident effects of the WRR policy?

1.2.1.4 Strict Priority (SP)

Load this scenario with the following command:

sudo python -m lab2.linear_topology.strict_priority

Open a terminal for each of the four hosts. Before running each experiment, compute the
expected throughput and report it below. Start the two UDP traffic flows, as shown in the
previous scenario, and fill the following table.

Remember that the traffic generated by h1 is assigned the highest priority.

Exp. Host Input load [kbit/s] Throughput [kbit/s] Expected Throughput [kbit/s]

19
h1 100
h2 200

20
h1 400
h2 800

21
h1 600
h2 800

22
h1 800
h2 800

23
h1 1200
h2 800

7



Are the results as expected? If not, why?

In summary, what are the most evident effects of the SP policy?

1.2.1.5 Max-min fairness

In the scenario of Fig. 1.1, compute the max-min fair allocation for the two flows.

Flow Max-min fair rate allocation [kbit/s]
h1-h3
h2-h4

Now list the experiment number in which the throughput at the receiver is the same as the one
computed according to the max-min fair allocation:

Which scheduling policy (FIFO, RR, WRR, SP) provides, at the receivers, the same rate as the
one of the max-min fair allocation when the bottleneck link is overloaded?

Is there any difference among schedulers in underload? Why?

1.2.2 Multiple flows scenarios

The objective of this section is to compare the performance of different scheduling algorithms,
namely FIFO, Round-Robin (RR), Weighted Round-Robin (WRR), and Strict Priority (SP), with
multiple flows across two topologies: a single bottleneck and a meshed topology.

For this part of the lab, you will run the script run.py, providing a configuration file that defines
the topology, scheduler, and flows to simulate.

Look at the example configuration file linear5 underload fifo.yml that you can find in
the lab2/configs/ folder and familiarize with the main options available, i.e.:

• experiment name: can be anything you like. This is the name of the output directory

8



where the results will be stored;

• topology: the topology to use:

– linear topology

– linear topology 5

– mesh topology 5

• scheduler: the scheduler to use:

– fifo

– rr

– wrr

– strict priority

• flows: the various flows we want to generate. For each flow, the most important options
are:

– rate: the rate we want to generate;

– start time: the starting time at which the flow should start generating traffic.

You will have to create a configuration file for each experiment. It is recommended to make
multiple copies of the above-mentioned example file.

NOTE: remember to change the experiment name, otherwise output files will be overwritten.

You can keep the default values of all other parameters for the moment.

To run the experiment through the run.py program, use the following command:

sudo python -m lab2.run lab2/configs/<config_file_name>

where <config_file_name> is a placeholder, which you need to replace with the file name
of the experiment you want to run. E.g.,

sudo python -m lab2.run lab2/configs/linear5_underload_fifo.yml

All experiments last for the duration set in the config file (suggested value 60 seconds (at
least)).

The program generates a folder with the experiment name on the Desktop, which contains
the following:

• a .csv file containing the input and output rates of all interfaces;

• a .txt file for each server, containing the iperf3 output;

• a .png plot showing both the offered load and the throughput of each flow.

For the remainder of this lab, you will mostly look at the throughput graph.

1.2.2.1 Single bottleneck

In the first scenario, the topology is made of two switches, with 5 hosts connected to each
of them, as shown in Fig. 1.2. All links between hosts and switches operate at 2 Mbps with
a delay of 40 ms. The link between the two switches (denoted as the “bottleneck”), runs at
1 Mbps with a delay of 10 ms.

To use this topology, specify linear topology 5 as the topology of the configuration file.

9



Figure 1.2: Linear topology with 5 flows

You must compare the effect of different schedulers with different offered loads.

Underload

First run the experiments under low-traffic conditions. Set the rates of the five flows to 100,
100, 100, 200, 350 kbit/s, respectively, and complete the table below with the average
throughput values obtained from the plot.

FIFO - Underload
Flow ID Input load Throughput

1
2
3
4
5

Repeat the experiment for the remaining three schedulers: Round-Robin, Weighted Round-
Robin, and Strict Priority, and report the results. The weights for the WRR scheduler are set to
1, 1, 1, 2, and 5, respectively. For the Strict Priority scheduler, the priorities are set to 1, 2, 2,
2, and 3, where a lower number indicates a higher priority.

Round-Robin - Underload
Flow ID Input load Throughput

1
2
3
4
5

10



Weighted Round-Robin - Underload
Flow ID Input load Throughput

1
2
3
4
5

Strict Priority - Underload
Flow ID Input load Throughput

1
2
3
4
5

Briefly discuss per-flow throughput and fairness properties comparing the various test cases,
with the help of the plots.

Overload

In overloaded conditions, the available capacity is not sufficient to serve all flows with their
input rates. Modify the configuration file and change the rates of the five flows from 100,
100, 100, 200, 350 kbit/s to 200, 200, 200, 300, 600 kbit/s, respectively.

Fill the table below by extracting the information from the plots.

11



FIFO - Overload
Flow ID Input load Throughput

1
2
3
4
5

Repeat the experiments for the other three schedulers: Round-Robin, Weighted Round-Robin
and Strict Priority, and report the results.

Round-Robin - Overload
Flow ID Input load Throughput

1
2
3
4
5

Weighted Round-Robin - Overload
Flow ID Input load Throughput

1
2
3
4
5

Strict Priority - Overload
Flow ID Input load Throughput

1
2
3
4
5

Briefly discuss per-flow throughput and fairness properties by comparing the various test
cases, with the help of graphs.

12



Max-min fairness

In the scenario of Fig. 1.2, compute the max-min fair allocation for the five flows.

Flow Max-min fair rate allocation [kbit/s]
h1-h6
h2-h7
h3-h8
h4-h9
h5-h10

Now list the experiment number in which the throughput at the receiver is the same as the one
computed according to the max-min fair allocation.

Which scheduling policy (FIFO, RR, WRR, SP) provides the same rate as those of the max-min
fair allocation. Why?

13



1.2.2.2 Mesh topology

For this section, you will use the topology shown in Fig. 1.3 with the depicted flows and routes.
All links between hosts and switches operate at 20 Mbps with a delay of 40 ms. The links
between all the switches run at 10 Mbps with a delay of 10 ms.

To use this topology, specify mesh topology 5 as the topology in the configuration file.

Figure 1.3: Mesh topology with 5 flows

Underload

Set the input rates of all flows to 1 Mbit/s (you will specify that as 1M in the file).

Report below and compare the results

Underload
Flow ID Throughput Expected Losses [%]

FIFO Round-Robin FIFO Round-Robin
1
2
3
4
5

Would you expect to see any difference among schedulers? Explain the results.

14



Overload

We now increase the rate of each flow to 10 Mbit/s. Is some link in the topology overloaded?

Before running the experiment, compute the expected rates that a max-min fairness algorithm
would assign to the five flows and write the values in the table below. Then, run the experiments
and fill in the table.

Overload - Throughput
Flow ID MAX MIN fair rate FIFO rate Round-Robin rate

1
2
3
4
5

Compare and explain the results.

1.2.2.3 Rate limiting

For this step, use the same configuration of Sec. 1.2.2.2 but limiting the link rates for flow 1 and
flow 2 to 1 Mbit/s. Before running the experiment, compute the expected rates that a max-min
fairness algorithm would assign to the new five flows and write the values in the table below.

15



Rate limiting - Throughput
Flow ID MAX MIN fair rate FIFO rate Round-Robin rate

1
2
3
4
5

Run the experiments and report in the above table the throughput achieved by the FIFO and
Round-Robin schedulers.

Do the results of the tests with the two different schedulers differ? Discuss and explain the
results.

1.2.3 Two-flows scenario - Transient (Optional)

For this section, you will re-use the same topology used in Sec.1.2.1 (reported below for your
convenience)

Figure 1.4: Linear topology with two flows

The script run.py provides a configuration file that defines the topology, the scheduler, flows
and forwarding tables to simulate the scenario under study.

The objective of this experiment is to analyze how different scheduling algorithms behave in
a transient scenario, where one flow starts later than the other. This allows us to observe the
impact of various schedulers on network performance during dynamic traffic changes.

16



Look at the example configuration file linear underload fifo transient.yml you
can find in the lab2/configs/. To use this topology, specify linear topology as the
topology of the configuration file.

In each experiment you have to change, for each flow, both the rate and the start time.

To run the experiment through the run.py program, use the following command:

sudo python -m lab2.run lab2/configs/<config_file_name>

where <config_file_name> is a placeholder, which you need to replace with the file name
of the experiment you want to run. E.g.,

sudo python -m lab2.run lab2/configs/linear_underload_fifo_transient.yml

All experiments last for the duration set in the config file (suggested simulation length is 30 sec-
onds).

The program generates a folder with the experiment name on the Desktop, which contains
the following:

• a .csv file containing the input and output rates of all interfaces;

• a .txt file for each server, containing the iperf3 output;

• a .png plot showing both the offered load and the throughput of each flow.

For this exercise, you will mostly look at the throughput graph.

1.2.3.1 FIFO

In this first scenario, we will use the FIFO scheduler.

We report below the various configurations (i.e., input loads) you should run. Before running
the experiments, write the expected throughput for the various flows. Then, complete the table
by reporting the offered load and the average throughput achieved towards the end of the
simulation, once the simulation reaches a stable condition:

Exp # Host Input load
[kbit/s]

Start time [s] Expected
throughput [kbit/s]

Offered load
[kbit/s]

Throughput
[kbit/s]

1
h1 200 0
h2 400 10

2
h1 400 0
h2 800 10

3
h1 800 10
h2 400 0

4
h1 800 0
h2 800 10

Discuss and explain below the results and flow behaviour.

17



1.2.3.2 Round-Robin

In this second scenario, we will use the Round-Robin scheduler.

We report below the various configurations (i.e., input loads) you should run. Before running
the experiments, write the expected throughput for the various flows. Then, complete the table
by reporting the offered load and the average throughput achieved towards the end of the
simulation, once the simulation reaches a stable condition:

Exp # Host Input load
[kbit/s]

Start time [s] Expected
throughput [kbit/s]

Offered load
[kbit/s]

Throughput
[kbit/s]

1
h1 200 0
h2 400 10

2
h1 400 0
h2 800 10

3
h1 800 10
h2 400 0

4
h1 800 0
h2 800 10

Discuss and explain below the results and flow behaviour.

18



1.2.3.3 Weighted Round-Robin

In this third scenario, we will use the Round-Robin scheduler. Remember that the weights for
the two flows generated by h1 and h2 are set at 4:1, respectively.

We report below the various configurations (i.e., input loads) you should run. Before running
the experiments, write the expected throughput for the various flows. Then, complete the table
by reporting the offered load and the average throughput achieved towards the end of the
simulation, once the simulation reaches a stable condition:

Exp # Host Input load
[kbit/s]

Start time [s] Expected
throughput [kbit/s]

Offered load
[kbit/s]

Throughput
[kbit/s]

1
h1 200 0
h2 400 10

2
h1 400 0
h2 800 10

3
h1 800 10
h2 400 0

4
h1 800 0
h2 800 10

Discuss and explain below the results and flow behaviour.

19



1.2.3.4 Strict priority

In this last scenario, we will use the Strict Priority scheduler. Remember that the traffic gener-
ated by h1 is assigned the highest priority.

We report below the various configurations (i.e., input loads) you should run. Before running
the experiments, write the expected throughput for the various flows. Then, complete the table
by reporting the offered load and the average throughput achieved towards the end of the
simulation, once the simulation reaches a stable condition:

Exp # Host Input load
[kbit/s]

Start time [s] Expected
throughput [kbit/s]

Offered load
[kbit/s]

Throughput
[kbit/s]

1
h1 200 0
h2 400 10

2
h1 400 0
h2 800 10

3
h1 800 10
h2 400 0

4
h1 800 0
h2 800 10

Discuss and explain below the results and flow behaviour.

20



21


	Laboratory #2
	Starting the lab
	Scheduling algorithms
	Two-flows scenario
	Multiple flows scenarios
	Two-flows scenario - Transient (Optional)



