

#### Introduction to **Quality of Service**

Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/

a Bianco – TNG group - Politecnico di Torino

### **Syllabus**

- · Applications examples (taxonomy?)
- Quality of Service
- Traffic characterization
- Network architectures characteristics in light of QoS provisioning
- Essential elements (mainly algorithms) to provide QoS

Bianco - TNG group - Politecnico di Torino

2

1

#### **Applications**

- Data
  - Generated by single users, by servers, by data centers, by enterprise networks, by P2P architectures, by computing app (e.g. Mapreduce)
  - E-mail, web, messaging, remote login, file transfer, grid computing,
- Voice
- Phone calls, IP calls, skype, ...
- Audio
- Music
- Video
- Multimedia
  - Videoconference, streaming, real time

#### Applications taxonomy

- · From the bit rate requirements point of view
  - Elastic applications (opportunistic)
    - · If resources are available, elastic applications try to exploit them
    - · If resources become scarce, elastic applications may reduce their rate (file transfer)
  - Non-elastic applications (multimedia mostly belong to this category)
    - · Require a minimum amount of resources
      - If available, the application works properly
      - If not available, the application is unable to work properly
    - · May become slightly elastic if changing the coding scheme

4

3

#### **Applications taxonomy**

- · From the data loss point of view
  - Loss tolerant
    - · Uncompressed audio, video, voice
  - Loss intolerant
    - File transfer, e-mail, web, grid computing, compressed audio, video, voice
- · From the time sensitivity point of view
  - Not sensitive
    - · File transfer, e-mail, web, grid computing
  - Very sensitive (100ms)
    - Phone
  - Sensitive (few s)
    - Streaming

#### Multimedia

# real-time and streaming me applications • Streaming applications

- Real time applications
- Two users interact (in real time)
- Low delay fundamental (a delayed packet is equivalent to a lost packet)
- Required bit-rate may be significant depending on whether video is involved
- May be robust to (limited) packet losses depending on the compression level
- No real time requirements
- May tolerate packet delays if initial delay large (buffering)
- Required bit-rate may be significant depending on whether video is involved
- May be robust to (limited) packet losses depending on the compression level

5

#### **Multimedia streaming**

- Streaming
  - Multimedia file stored at the source
  - Sent to the receiver
    - · Buffering at the receiver
  - File play-out starts when the file transfer is under way
  - Constraint: missing data should reach the receiver before the play-out ends
  - Alternative to file download to playback it later (file transfer!)

Andrea Bianco – TNG group - Politecnico di Torino

7

omputer Networks Design and Control - 7

8

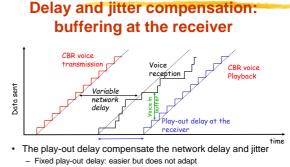
#### Real-time multimedia: Internet Phone

- · Voice as input: sounds and silence period alternate
- Packets generated at a constant rate or when the source emitting power is above a given threshold:
  - E.g.: 20 ms of voice sample at 8kb/s
- Packets are delayed (should be compensated) and lost:
  - Network losses, due to congestion
  - max tolerable may be 10%

     Losses due to excessive delays (IP datagram received too late for playout)
  - Max tolerable is roughly 400 ms
- Compensation techniques
- At the transmitter (adaptive coding)
- At the receiver (buffering)

ndrea Bianco – TNG group - Politecnico di Torino

omnuter Networks Design and Control - 8


#### Reaction to losses, delay and jitter

- · Use of a variable bit-rate coder
  - Send small size packets when congestion is detected and the experienced delay is high
  - Send large size packets if the network is lightly loaded
- Quality of reception estimate mechanisms are needed
- The transmitter bit rate should be controlled according to:
  - Instantaneous and/or average loss rate
  - Absolute or relative delay
  - Delay jitter

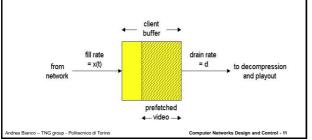
Andrea Bianco – TNG group - Politecnico di Torino

9

Computer Networks Design and Control - 9



Adaptive play-out delay


Andrea Bianco – TNG group - Politecnico di Torino

10

Computer Networks Design and Control - 1

### Buffering at the client side

• Tradeoff betweeen initial delay (buffer size) and tolerance to network jitter



#### Fixed or adaptive playout delay

- · Fixed play-out delay: easier but does not adapt
  - The receiver plays out each sample exactly q seconds after the sample generation
    - If the sample has timestamp t, it is played out at t+q
    - If the sample is received after t+q, it is considered as lost
  - The value assumed by q
    - Large q: less packets lost, higher delay, more buffering
    - Small q: improved interactivity
- · Adaptive play-out delay
  - minimize play-out delay while keeping low the loss rate
  - Estimate the network delay, to determine the play-out delay
  - Compress or extend the silence periods

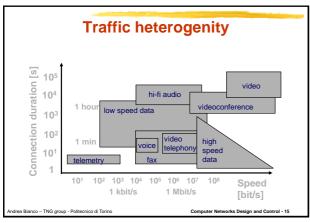
Ompress of exterior the shence periods

Computer Networks Design and Control -

### Introduction to QoS

#### **Quality of service**

- · What is the meaning of quality of service?
- · Different definitions
- We use the term mainly to describe performance seen by user
  - Define indices to describe quality
- Examples of indices describing quality of service:
  - Speed (in bit/s), throughput, bit rate, bandwidth
  - Delay (average, percentile, maximum, variance, jitter)
  - Loss probability
  - Error probability
  - Blocking probability
  - Fault probability or availability
  - Recovery time after a fault
- Many others (time needed to open a connection, costs and tarifs ...)


#### **Quality of service**

- · Different types of traffic require attention to different indices of quality
  - Phone calls (human voice)
    - · Guaranteed fixed bit rate
    - · Low delays
    - · Low blocking probability
  - Data traffic
    - · Low or negligible loss probability
- Provide QoS in an heterogeneous environment is more difficult (traffic heterogeneity)
- Provide QoS to unpredictable traffic is more difficult (traffic characterization)

o – TNG group - Politecnico di Torino

<u>14</u>

<u>13</u>



#### User traffic characterization \*

- · CBR (Constant Bit Rate) sources:
  - Rate (bit/s)
  - · Data size
    - · "Perfectly" known
  - Call duration (s)
  - Call generation process
    - · Only statistically known

15

17

# 16

#### User traffic characterization \*

- · VBR sources:
  - Average rate (bit/s)
    - Known?
    - · Over which period?
  - Peak rate (bit/s) or
  - Burstiness (Peak rate/ average rate)
    - Known (worst case)
  - Burst duration
  - Call duration (s)
  - Call generation process
    - · Only statistically known

User traffic characterization Burstiness= Peak rate/ Average rate 1000 supercomputer connectionless alphanumeric 100 Burstiness graphical terminals terminal 10 HDTV VIDEO  $10^{1}$ Peak rate [bit/s]

### Introduction to QoS

#### **Quality of service**

- · Networks used as examples
  - Fixed telephone network: POTS
  - Internet
  - B-ISDN
- · Let's start by describing in an informal way the quality of service provided by these networks

#### **POTS**

- · Characteristics
  - CBR source completely known (generated by the network)
  - Circuit switching
    - Constant, dedicated bit rate ⇒ no congestion
    - Minimum possible delay (only propagation): order of tens of ms (real time)
  - Zero loss probability
     Error probability smaller than few %
  - Small or negligible blocking probability
- QoS largely independent on other users (apart from blocking probability)
- Network utilization can be really low, user satisfaction very high

Bianco – TNG group - Politecnico di Torino

20

<u> 19</u>

#### Internet

- Characteristics
  - Source behavior unknown
  - Packet switching with datagram service
    - · Complete sharing of network resources
    - · Bit rate and delay unknown
    - · Possible congestion
    - · Loss probability may be significant
  - Error probability negligible in wired networks
  - Zero blocking probability
- · QoS largely dependent on other users
- Network utilization can be very high, user satisfaction can be very low

#### **B-ISDN**

- Intermediate situation
  - Source known (either deterministically or statistically)
  - Packet switching with virtual circuit service
    - May introduce algorithms to control network resources sharing
    - · Bit rate and delay negotiable
    - · Loss probability negotiable
  - Blocking probability reasonably small
  - Error probability negligible
- QoS dependent on other user behavior and on algorithms used to manage network resources
- Trade network utilization and user satisfaction

22

21

**Quality of service** 

- · Design problem
  - Given:
  - · Network topology (nodes, link speed)
    - · Traffic characterization
  - User behaviour
  - Jointly obtain:
    - Guaranteed QoS for each user connection
    - · High network utilization
- · Without the objective of high network utilization, the problem becomes trivial
  - overprovisioning (power line or water distribution network)

#### Design to obtain QoS \*

- Different time scale (with different level of complexity)
- Network design and planning (resource deployment)
  - Possible re-design and re-planning
  - On the basis of traffic estimates and cost constraints
  - Exploits routing criteria and traffic engineering
- Network management (running a network)
  - Measurements
- Fault management (protection and restoration)
- May include simple re-design and re-planning
- Connection management
- Data unit transport

23

#### Our definition of QoS

- · Assume that a network has been designed and is properly managed
  - Available resources are given
- Mainly study algorithms operating at the following timescale:
  - Connection management
  - Data unit transport
- Also named traffic control problem
- Must define what is meant by connection. Also named data classification problem.
- Two different traffic control principles:
  - Preventive control: mainly executed at network ingress, with fairly tight traffic control to avoid congestion insurgence in the network
  - Reactive control: react when congestion situation occur, to reduce or eliminate congestion negative effects
     TNG group: Politection direction of the congestion and control: 2 Computer Networks Design and Control: 2

#### Traffic control: essential elements \*

- · Connection oriented network
- User-network service interface
  - Traffic characterization
  - QoS negotiation
- · Resource allocation (bit rate and buffer)
- Algorithms for traffic control
  - CAC (Connection Admission Control) and routing
  - Scheduling and buffer management (allocation, discard) in switching nodes
  - Conformance verification (policing or UPC: Usage Parameter Control)
  - Traffic shaping to adapt it to a given model
  - Congestion control

Bianco – TNG group - Politecnico di Torino

<u> 26</u>

<u>25</u>

#### Traffic control: connection oriented network

- · The connection oriented paradigm permits to know which are the network elements over which traffic control algorithms must be executed (path known)
  - Circuit switching
  - Packet switching with virtual circuit service
- · If high utilization is a major objective:
  - Packet switching
- · As such, the most suited switching technique to obtain QOS is packet switching with virtual circuit service

#### Traffic control:

#### user-network service interface

- The capability to control the network increases with the knowledge of user traffic. Limiting factor is the complexity.
- Over the service interface
  - Traffic characterization
- QoS parameters negotiation
- Can be defined on a call basis or on a contract basis
- POTS: implicit, on a contract basis
- Internet: not existing
- Frame relay: negotiable, normally on a contract basis
- B-ISDN: negotiable with traffic contract on both contract and
- Internet extended to support QoS: negotiable through a SLA (Service Level Agreement) mainly on a contract basis

28

27

#### Traffic control: resource allocation

- · Main resources:
  - Bit rate over transmission links
  - Buffer
- · Resources can be allocated
  - On a contract basis (booking)
  - On a call basis
  - Packet by packet
- Allocation
  - Exclusive (dedicated resource)
  - Shared

### Algorithms: CAC and routing

- Routing
- QoS based path selection to router a connection
- CAC
  - Determine whether to accept a connection or not, depending on
    - The path chosen by the routing algorithm
       Traffic characterization
    - QoS requests
  - Network status
- Constraints
- It is not acceptable to destroy or even reduce the quality of service guaranteed to already accepted connections ⇒
   Can be relinquished
- Connection must be refused to avoid network overload or
- Preventive control (but can become reactive)

### Introduction to QoS

#### Algorithms: scheduling and buffer management

- Scheduling
  - Choice of the data unit to be transmitted among data unit stored in the switch
- · Buffer management
  - Allocation (partial/total, exclusive/shared) of memories in the switch
  - Dropping policies
- Mandatory in an heterogeneous environment to support different QOS requests
  - FIFO (First In First Out) or FCFS (First Came First Served) policy with drop-tail discard is optimal in a homogeneous environment
  - Counter for less than 10 pieces at supermarket
- Preventive and reactive

a Bianco – TNG group - Politecnico di Torino

## Algorithms: policing e shaping

- · Policing (traffic verification)
  - Network control of user behavior to guarantee conformance to traffic characterization
- Shaping (traffic conditioning)
  - User/network adaptation of data traffic to make it conformant to a given characterization
- Mandatory to control user honesty and to adapt traffic which is difficult to generate as conformant a priori
- Where algorithms must be executed?
  - Only at network edge, i.e., when user access network?
  - Multiplexing points modify traffic shape
    - Both at network access and internally to the network (UNI and NNI)
- Mainly preventive, but they can become reactive if QoS level may change over time

<u>32</u>

<u>31</u>

### **Algorithms: congestion control**

- Congestion
  - Traffic excess over a given channel (link)
- Can occur due to
  - Short term traffic variability
  - Allocation policies that share resources to increase network utilization
- · Congestion effects:
  - Buffer occupancy increase
  - Delay increase
  - Data loss
- · Needed to obtain high link utilization
- Must execute at network edge, within the network
- · Reactive

<u>33</u>