
POLITECNICO DI TORINO

Lab #2 on
Traffic Scheduling and Buffer

Management

“Computer network design and control” module of
Communication and network systems

Academic year 2023/24

Andrea Bianco, Paolo Giaccone,
Alessandro Cornacchia, Iman Lotfimahyari, Matteo Sacchetto

Version: December 1, 2023
©2023-24



1 Introduction

The lab deals with fairness issues and QoS support through scheduling and buffer manage-
ment algorithms. The activities carried on in this lab are based on Mininet and the Linux Traffic
Control (tc) tool, which permits defining and configuring the QoS algorithms on the virtual
switch interfaces.

1.1 Before starting

To start this lab you need to perform the following steps:

1. Navigate to Crownlabs and start the ”Lab1” VM (If you do not remember how to use
Crownlabs, please refer to the Introduction section of the Lab 1)

2. Once you are connected to the VM you need to download all the necessary material
needed to run this lab. So, within the VM, open a web browser and either

• navigate to https://www.telematica.polito.it/course/computer-network-design-and-control

• Download the ”lab2.zip” archive

3. or directly download from https://www.telematica.polito.it/app/uploads/
2023/11/lab2.zip

4. Open the File manager and navigate to the ”Downloads” folder. Here you should find
the ”lab2.zip” archive. Right-click on it and select the ”Extract to” option. In the pop-up
window, select ”Desktop” and then click on the ”Extract” button you can find at the bottom
right of such window. You will find a lab2 folder with multiple subfolders dedicated to
the different scenarios we will explore as well as the install.sh which contains the
additional dependencies needed for this lab.

5. Close the File manager, then open a terminal on the Desktop (Right-click on the Desktop
and select ”Open terminal here”)

6. On the terminal type bash install.sh and press Enter.

7. Once the script finishes, you are all set and ready to start the Lab.

2 Scheduling algorithms

The objective of this part of the laboratory is to compare the performance of different schedul-
ing algorithms, namely FIFO, Round-Robin (RR), Weighted Round-Robin (WRR), and Strict-
Priority on different topologies.

2.1 Two-flows scenario

We focus on a simple topology with two traffic flows, for variable input loads.
The topology is depicted in Fig. 1 and comprises two hosts h1 and h2 acting as traffic

generators and two hosts h3 and h4 acting as traffic destinations. The hosts are connected
through a sequence of two switches s1 and s2. All the links are running at 2Mbps, except for
the link (denoted as “bottleneck”) between the two switches running at 1Mbps. The delays of
all the links are set equal to 10ms.

In the folder lab2/linear topology you find the scripts to configure the topology and
run different scheduling algorithms on the output interface connecting s1 to s2:

2

https://www.telematica.polito.it/course/computer-network-design-and-control
https://www.telematica.polito.it/app/uploads/2023/11/lab2.zip
https://www.telematica.polito.it/app/uploads/2023/11/lab2.zip


• fifo.py implements FIFO queueing;

• rr.py implements a Round-Robin (RR) policy;

• wrr.py implements a Weighted Round-Robin (WRR) with weights 4 (for the traffic gen-
erated by h1) and 1 (for the traffic generated by h2);

• strict-priority.py implements a strict priority (SP) scheduler, with the traffic gen-
erated by h1 at the highest priority.

Figure 1: The scenario with two flows.

All the commands reported below need to be run with the current working directory set
to /home/netlab/Desktop. If you are not sure which directory your terminal is currently
in, you can check it by running pwd. Otherwise, simply run cd /home/netlab/Desktop to
navigate to the correct location.

2.1.1 FIFO scheduler

Run the first scenario with a FIFO scheduler, using the command:

sudo python -m lab2.linear_topology.fifo

Open the terminal of all four hosts by typing, within the mininet window:

xterm h1 h2 h3 h4

Note that the window label, e.g., Node:h1, permits the identification of the host whose terminal
is running on the window. Now start the iperf3 servers at the destination hosts by typing on
both terminals of h3 and h4:

iperf3 -s

The command should print that port 5201 is used to receive the traffic.
To begin with, we consider a single flow scenario. Start UDP traffic from h1 to h3 with

100kbit/s load by typing on the terminal of h1:

iperf3 -c 10.0.0.3 -u -t 100 -b 100k

Note that you can stop the source when the results stabilize by typing CTRL-C.
Explain below what is the meaning of all of the above options (-s, -c, -u, -t, -b). Type

man iperf3 to get this info.

3



Observe the measured throughput (denoted as “Bitrate”) and losses measured in h3 (not in
h1) and fill the following table by repeating the experiment for different input loads, as reported
in the following table. Note that the losses are observed, when occurring, after 30-60 seconds
of the experiment, due to the internal buffering. When the results stabilize and the losses
are observed (if any), you can stop the experiment. Compute also the theoretical throughput,
eventually showing the way the computation is done.

Exp. Host Input load [kbit/s] Throughput [kbit/s] Loss probability Theo. Thr.
1 h1 100
2 h1 500
3 h1 900
4 h1 1200
5 h1 1500

Are the results as expected? Why?

Now run a scenario with 2 UDP flows (from h1 to h3, and from h2 to h4) for all the combinations
of input loads shown in the table.

4



Exp. Host Input load [kbit/s] Throughput [kbit/s] Loss probability Theo. Thr. [kbit/s]

6
h1 100
h2 200

7
h1 400
h2 800

8
h1 400
h2 1200

9
h1 600
h2 1200

Are the results as expected? Why? In summary, what is the effect of the FIFO policy?

2.1.2 Round robin (RR)

Start the scenario with

sudo python -m lab2.linear_topology.rr

Then open the terminal of all four hosts. Start the two UDP traffic flows, as in the previous
scenario, and fill the following table. From now on, we will not consider the loss probability,
since it may require some time to observe it, due to the internal buffering. The results should
converge very fast.

Exp. Host Input load [kbit/s] Throughput [kbit/s] Theo. Throughput [kbit/s]
.

10
h1 100
h2 200

11
h1 400
h2 800

12
h1 400
h2 1200

13
h1 600
h2 1200

Are the results as expected? Why? In summary, what is the effect of the RR scheduling policy?

5



2.1.3 Weighted round robin (WRR)

Start the scenario with the command

sudo python -m lab2.linear_topology.wrr

Then open the terminal of all four hosts. Start the two UDP traffic flows, as in the previous sce-
nario, and fill in the following table. Recall that the weights are 4:1, for the two flows generated
by h1 and h2, respectively.

Exp. Host Input load [kbit/s] Throughput [kbit/s] Theo. Throughput [kbit/s]

14
h1 100
h2 200

15
h1 400
h2 800

16
h1 600
h2 800

17
h1 800
h2 800

18
h1 1000
h2 800

Are the results as expected? Why? In summary, what is the effect of the WRR scheduling
policy?

6



2.1.4 Strict priority (SP)

Start the scenario with

sudo python -m lab2.linear_topology.strict_priority

Then open the terminal of all four hosts. Start the two UDP traffic flows, as in the previous
scenario, and fill in the following table. As a reminder, the traffic generated at h1 is at highest
priority.

Exp. Host Input load [kbit/s] Throughput [kbit/s] Theo. Throughput [kbit/s]

19
h1 100
h2 200

20
h1 400
h2 800

21
h1 600
h2 800

22
h1 800
h2 800

23
h1 1200
h2 800

Are the results as expected? Why? In summary, what is the effect of the SP scheduling policy?

7



2.1.5 Max-min fairness

In the scenario of Fig. 1, compute the max-min fair allocation for the two flows.

Flow Max-min fair rate allocation [kbit/s]
h1-h3
h2-h4

Now list the experiment number for the throughput results that are compatible with a max-min
fair allocation:

Which scheduling policy (FIFO, RR, WRR, SP) is compatible with a max-min fair allocation
when the bottleneck link is overloaded?

2.2 Multiple flows scenario

The objective of this step is to compare the performance of different scheduling algorithms,
namely FIFO, Round-Robin (RR), Weighted Round-Robin (WRR), and Strict-Priority, with mul-
tiple flows on two topologies. For this section of the lab, you will be running the program
run.py passing a configuration file describing the topology, scheduler, and flows to simulate.

Look at the example configuration file linear5 underload fifo.yaml you can find in
the folder lab2/configs/ and familiarize yourself the main options, i.e.:

• the experiment name (can be anything you like);

• the topology to use (either linear topology 5 or mesh topology 5);

• the scheduler to use, one of:

– fifo

– rr

– wrr

– strict priority

• the rate of each of the five flows.

You will have to create a configuration file for each experiment. You can copy the above men-
tioned example file, remember though to change the experiment name, otherwise output files
will be overwritten. You can keep the default values of all other parameters for now.

You run the experiment through the run.py program, e.g.,

sudo python -m lab2.run lab2/configs/linear5_underload_fifo.yaml

All experiments last for the duration set in the config file (suggested at least 60 seconds).
The program generates on the desktop a folder with the experiment name in which you will
find:

• a .csv file containing the input and output rates of all interfaces;

8



• a .txt file for each server, containing the iperf3 output;

• a .png plot showing the offered load of each flow;

• a .png plot showing the throughput of each flow.

For the remainder of this lab, you will mostly look at the throughput graph.

2.2.1 Multiflow single bottleneck network

In this scenario, the topology is made of two switches, with 5 hosts connected to each of them,
as shown in Fig. 2. All link rates are fixed at 2 Mbit/s except the link between the switches
which is fixed at 1 Mbit/s to be a possible bottleneck.

To use this topology, specify linear topology 5 as the topology of the configuration
file.

Figure 2: Multiflow single bottleneck network topology.

You must compare the effect of using different schedulers in the switches while transmitting
with i) different offered loads and ii) different starting times of traffic generation..

2.2.1.1 Under-load First, we run the experiments in low traffic conditions, where flows are
unlikely to experience losses. Fix the rates of the five flows to (respectively) 100, 100, 100,
200, 350 kbit/s, and fill the table below with the throughput reported in the plot.

FIFO scheduler - Underload
Flow id Input load Throughput

1
2
3
4
5

Repeat the experiments for the other three schedulers: strict priority, round robin, weighted
round robin, and report the results. Weights for the WRR scheduler, are set respectively to
1,1,1,2,5. For strict priority, priorities are set respectively 1, 2, 2, 2, 3 (the lower number the
higher priority)

9



Strict priority - Underload
Flow id Input load Throughput

1
2
3
4
5

Round robin - Underload
Flow id Input load Throughput

1
2
3
4
5

Weighted round robin - Underload
Flow id Input load Throughput

1
2
3
4
5

Briefly discuss per-flow throughput and fairness properties comparing the various test
cases, with the help of graphs.

10



2.2.1.2 Over-load We now move to overloaded conditions, where there might not be enough
capacity to serve all flows. Change the configuration file and set the rates of the five flows from
(respectively) 100, 100, 100, 200, 350 kbit/s to 200, 200, 200, 300, 600 kbit/s.

Fill the table below by extracting the info from the plots.

FIFO scheduler - Overload
Flow id Input load Throughput

1
2
3
4
5

Repeat the experiments for the other three schedulers: strict priority, round robin, weighted
round robin, and report the results.

Strict priority - Overload
Flow id Input load Throughput

1
2
3
4
5

11



Round robin - Overload
Flow id Input load Throughput

1
2
3
4
5

Weighted round robin - Overload
Flow id Input load Throughput

1
2
3
4
5

Briefly discuss per-flow throughput and fairness properties by comparing the various test
cases, with the help of graphs.

2.2.2 Max-min fairness

In the scenario of Fig. 2, compute the max-min fair allocation for the two flows.

12



Flow Max-min fair rate allocation [kbit/s]
h1-h6
h2-h7
h3-h8
h4-h9
h5-h10

Now list the experiment number for the throughput results that are compatible with a max-min
fair allocation:

Which scheduling policy (FIFO, RR, WRR, SP) is compatible with a max-min fair allocation
when the bottleneck link is overloaded?

13



2.3 Multiflow mesh network.

For this step, you will use the topology in Fig. 3 with the depicted flows and routes. All the
links between the switches (i.e., red links) are fixed at 10 Mbit/s. To use this topology, specify
mesh topology 5 as the topology in the configuration file.

Figure 3: Multiflow mesh network topology.

2.3.1 Underload

Set the input rates of all flows to 1 Mbit/s (you will specify that as 1M in the file).
Report below and compare the results

Underload
Flow id Throughput Losses [%]

FIFO Round Robin FIFO Round Robin
1
2
3
4
5

Would you expect to see any difference? Explain the results.

14



2.3.2 Overload

We now increase the rate of all flows to 10 Mbit/s.
Before running the experiment, compute the expected rates that a max-min fairness algo-

rithm would assign to the five flows and write the values in the table below.

Overload - Throughput
Flow id MAX MIN fair rate FIFO rate Round Robin rate

1
2
3
4
5

Explain the results.

2.3.3 Rate limiting

For this step, repeat the step in Sec. 2.3.2 with limiting the link rates for flow 1 and flow 2 to 1
Mbit/s. Before running the experiment, compute the expected rates that a max-min fairness
algorithm would assign to the new five flows and write the values in the table below.

Rate limiting - Throughput
Flow id MAX MIN fair rate FIFO rate Round Robin rate

1
2
3
4
5

Also, report in the table the throughput achieved by the FIFO and Round Robin schedulers.
Do the results of the tests with the two different schedulers differ? Explain the results.

15



16


	Introduction
	Before starting

	Scheduling algorithms
	Two-flows scenario
	FIFO scheduler
	Round robin (RR)
	Weighted round robin (WRR)
	Strict priority (SP)
	Max-min fairness

	Multiple flows scenario
	Multiflow single bottleneck network
	Max-min fairness

	Multiflow mesh network.
	Underload
	Overload
	Rate limiting



