Software Defined Networking

Introduction to the labs

Andrea Bianco, Paolo Giaccone http://www.telematica.polito.it/

Labs

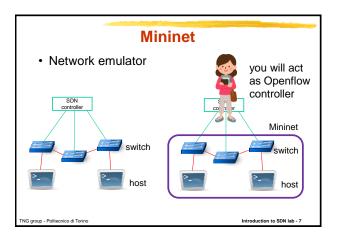
- Lab #1
 - 3 hours
 - Configuration
 - SDN and network routing
- Lab #2
 - 3 hours
 - Performance
 - QoS support: mainly scheduling
- Lab #3
- 3 hours
- Detailed analysis and implementation
- Simulation of algorithms
- It is possible to do the labs at home
- assistance is provided only in presence during the lab

Lab logistics

- LED2
 - 2nd floor south "scavalco" on C.so Castelfidardo
- Friday 08:30-11:30 in LED2
- · Please arrive 5 minutes earlier, so you can start the lab on time
- Use crownlabs
 - Working in a virtual environment
 - Use a Linux Virtual Machine

Lab detailed instructions

- · 3 pdf files, one for each lab
- · Print the pdf at home and bring it into the lab
 - one copy for each student
- · Bring pen and papers to take notes
 - required to be able to follow the lab



Lab #1

- · Preliminary step
 - overview of the shell commands to use with the terminal application
 - consider also the hints to type quickly the commands
- · Follow step by step and do not skip any step, otherwise you will not be able to follow
- · Main software tool: Mininet

Mininet · Network emulator controlle Mininet switch

Software Defined Networking

Mininet

- · Network emulator
 - host
 - switch
 - SDN controller
- · Linux container/process for each node
- · Command line interface CLI
 - global commands for the emulator
 - local commands for the nodes

ING group Politopping di Torino

Introduction to SDN lab - 9

Mininet global commands

- · nodes display nodes
 - h1 -> host 1
 - s1 -> switch 1
- · links display links
 - h1-eth0<->s1-eth1
- · net display a summary of all the nodes and links
 - h1 h1-eth0:s1-eth1
- dump dump information about all nodes
 - <P4Host h1: h1-eth0:10.0.0.1 pid=12345>

TNG group - Politecnico di Torini

troduction to SDN la

Mininet local commands

- · local commands for the nodes
 - if the first string typed a host, switch or controller name, the command is executed on that node
- h1 ifconfig provides the list of the network interfaces attached to h1
- h1 ping h2 sends ICMP packets from h1 to h2
- h1 iperf -c 10.0.0.1 uses iperf to test the bandwidth towards 10.0.0.1
- sh allows to run a command outside mininet, while mininet is running; e.g., mininet> sh Is

TNG group - Politecnico di Torin

Introduction to SDN lab - 10

Network performance tool

- iperf3 to test the available bandwidth between two hosts
- · client server application
 - client: generates the traffic (TCP/UDP)
 - server: receives the traffic (TCP/UDP)
- iperf3 -c dest_IP run the test as client
- iperf3 –s run the test as server
 - by default, each host is already running it in background
- many options are available: iperf3 --help

TNG group - Politecnico di Torin

Introduction to SDN lab - 11

Lab step #1

- Become familiar with Mininet and its commands
 - two hosts and one (software) Openflow switch
 - understand the performance of software switches

TNG group - Politecnico di Torino

Introduction to SDN lab - 12

Software Defined Networking

Lab step #2

- · Single switch topology
 - discovery in terms of node graph and IP addresses
 - test connectivity
 - add the proper match-action rules in the flow table to route the traffic
 - · based only on the source port
 - based only on the destination port
 - observe the traffic through tshark
- Reminde the notation: IP 1.2.3.4/24 = 1.2.3.4/255.255.255.0

TNG group - Politecnico di Torino

oduction to SDN lab - 13

Lab step #3

- · Two switches topology
 - discovery in terms of node graph and IP addresses
 - test connectivity and fix the routing

TNG group - Politecnico di Torino

Lab step #4

- · Multiple switches topology
 - "complex" topology
 - discovery in terms of node graph and IP addresses
 - test connectivity and fix the routing

NG group - Politecnico di Torino

Introduction to SDN lab - 15

Lab step #5

- · Multipath routing
 - "complex" topology
 - route UDP and TCP flows between the same pairs of hosts on different paths

TNG group - Politecnico di Torino

Introduction to SDN lab - 16

Lab step #6

- · Dynamic routing
 - "complex" topology
 - a flow is rerouted from the main path to a backup one
 - flow-mod messages are issued by the controller (i.e., the student)
 - investigate whether the sequence of the messages matters or not for a completely transparent rerouting process (i.e., no losses)

TNG group - Politecnico di Torine

Introduction to SDN lab - 17

Lab step #7

- Fault-tolerant rerouting (OPTIONAL)
 - detect a link failure and apply the backup path

TNG group - Politecnico di Torino

Introduction to SDN lab - 18