

Introduction to **Quality of Service**

Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/

Bianco - TNG group - Politecnico di Torin

1

Quality of service

- · What is the meaning of quality of service?
- · Different definitions
- We use the term mainly to describe performance seen by user
 - Define indices to describe quality
- Examples of indices describing quality of service:
 - Speed (in bit/s), throughput, bit rate, bandwidth
 - Delay (average, percentile, maximum, variance, jitter)
 - Loss probability
 - Error probability
 - Blocking probability
 - Fault probability or availability
 - Recovery time after a fault
 - Many others (time needed to open a connection, costs and tarifs ...)

2

Quality of service

- Different types of traffic require attention to different indices of quality
 - Phone calls (human voice)
 - · Guaranteed fixed bit rate
 - · Low delays
 - · Low blocking probability
 - Data traffic
 - · Low or negligible loss probability
- Provide QoS in an heterogeneous environment is more difficult (traffic heterogeneity)
- Provide QoS to unpredictable traffic is more difficult (traffic characterization)

3

4

User traffic characterization

- · CBR (Constant Bit Rate) sources:
 - Rate (bit/s)
 - · Data size
 - · "Perfectly" known
 - Call duration (s)
 - Call generation process
 - · Only statistically known

User traffic characterization

- VBR sources:
 - Average rate (bit/s)
 - · Known?
 - · Over which period?
 - Peak rate (bit/s) or
 - Burstiness (Peak rate/ average rate)
 - Known (worst case)
 - Burst duration

 - Call duration (s)
 - Call generation process
 - Only statistically known

5

User traffic characterization Burstiness= Peak rate/ Average rate 1000 connectionless alphanumeric 100 graphical Burstiness terminals 10 VIDEO 106 107 10 10¹ Peak rate [bit/s] Bianco - TNG group - Politecnico di Torino

Quality of service

- · Networks used as examples
 - Fixed telephone network: POTS
 - Internet
 - B-ISDN
- · Let's start by describing in an informal way the quality of service provided by these networks

Bianco - TNG group - Politecnico di Torino

8

7

POTS

- Characteristics
 - CBR source completely known (generated by the network)
 - Circuit switching
 - Constant, dedicated bit rate ⇒ no congestion
 - Minimum possible delay (only propagation): order of tens of ms (real time)
 - · Zero loss probability
 - Error probability smaller than few %
 Small or negligible blocking probability
- QoS largely independent on other users (apart from blocking probability)
- Network utilization can be really low, user satisfaction very high

Internet

- Characteristics
 - Source behavior unknown
 - Packet switching with datagram service
 - · Complete sharing of network resources
 - · Bit rate and delay unknown
 - · Possible congestion
 - · Loss probability may be significant
 - Error probability negligible in wired networks
 - Zero blocking probability
- · QoS largely dependent on other users
- Network utilization can be very high, user satisfaction can be very low

10

9

B-ISDN

- · Intermediate situation
 - Source known (either deterministically or statistically)
 - Packet switching with virtual circuit service
 - May introduce algorithms to control network resources sharing
 - · Bit rate and delay negotiable
 - · Loss probability negotiable
 - Blocking probability reasonably small
 - Error probability negligible
- QoS dependent on other user behavior and on algorithms used to manage network resources
- Trade network utilization and user satisfaction

Quality of service

- Design problem
 - Given:
 - · Network topology (nodes, link speed)
 - · Traffic characterization
 - User behaviour
 - Jointly obtain:
 - Guaranteed QoS for each user connection
 - · High network utilization
- Without the objective of high network utilization, the problem becomes trivial
 - overprovisioning (power line or water distribution network)

Bianco - TNG group - Politecnico di Torino

<u>11</u>

Design to obtain QoS

- · Different time scale (with different level of complexity)
- Network design and planning (resource deployment)
 - Possible re-design and re-planning
 - On the basis of traffic estimates and cost constraints
 - Exploits routing criteria and traffic engineering
- Network management (running a network)
 - Measurements
 - Fault management (protection and restoration)
 - May include simple re-design and re-planning
- · Connection management
- Data unit transport

<u>14</u>

Our definition of QoS

- · Assume that a network has been designed and is properly managed
 - Available resources are given
- Mainly study algorithms operating at the following time-
 - Connection management
 - Data unit transport
- Also named traffic control problem
- Must define what is meant by connection. Also named data classification problem.
- Two different traffic control principles:
 - Preventive control: mainly executed at network ingress, with fairly tight traffic control to avoid congestion insurgence in the network
 - Reactive control: react when congestion situation occur, to reduce or eliminate congestion negative effects

 TNG group Politectical direction

 Computer Networks Design and Control 1:

<u>13</u>

Traffic control:

- Connection oriented network
- User-network service interface
- Traffic characterization
 - QoS negotiation
- Resource allocation (bit rate and buffer)
- Algorithms for traffic control
 - CAC (Connection Admission Control) and routing
 - Scheduling and buffer management (allocation, discard) in switching nodes
 - Conformance verification (policing or UPC: Usage Parameter Control)
 - Traffic shaping to adapt it to a given model
 - Congestion control

Traffic control: connection oriented network

- The connection oriented paradigm permits to know which are the network elements over which traffic control algorithms must be executed (path known)
 - Circuit switching
 - Packet switching with virtual circuit service
- · If high utilization is a major objective:
 - Packet switching
- As such, the most suited switching technique to obtain QOS is packet switching with virtual circuit service

16

15

Traffic control:

user-network service interface

- The capability to control the network increases with the knowledge of user traffic. Limiting factor is the complexity.
- · Over the service interface
 - Traffic characterization
 - QoS parameters negotiation
- · Can be defined on a call basis or on a contract basis
- · POTS: implicit, on a contract basis
- Internet: not existing
- Frame relay: negotiable, normally on a contract basis
- B-ISDN: negotiable with traffic contract on both contract and
- Internet extended to support QoS: negotiable through a SLA (Service Level Agreement) mainly on a contract basis

Traffic control: resource allocation

- Main resources:
 - Bit rate over transmission links
 - Buffer
- Resources can be allocated
 - On a contract basis (booking)
 - On a call basis
 - Packet by packet
- Allocation
 - Exclusive (dedicated resource)
 - Shared

Introduction to QoS

Algorithms: CAC and routing

- Routing
- QoS based path selection to router a connection
- CAC
 - Determine whether to accept a connection or not, depending on
 - The path chosen by the routing algorithm Traffic characterization

 - QoS requests
- Network status
- · Constraints
 - It is not acceptable to destroy or even reduce the quality of service guaranteed to already accepted connections \Rightarrow Can be relinquished

 - Connection must be refused to avoid network overload or
- Preventive control (but can become reactive)

buffer management

Algorithms: scheduling and

- Scheduling
 - Choice of the data unit to be transmitted among data unit stored in the switch
- Buffer management
 - Allocation (partial/total, exclusive/shared) of memories in the switch
 - Dropping policies
- Mandatory in an heterogeneous environment to support different QOS requests
 - FIFO (First In First Out) or FCFS (First Came First Served) policy with drop-tail discard is optimal in a homogeneous environment
 - Counter for less than 10 pieces at supermarket
- Preventive and reactive

co – TNG group - Politecnico di Torino

20

<u>19</u>

Algorithms: policing e shaping

- Policing (traffic verification)
 - Network control of user behavior to guarantee conformance to traffic characterization
- Shaping (traffic conditioning)
 - User/network adaptation of data traffic to make it conformant to a given characterization
- Mandatory to control user honesty and to adapt traffic which is difficult to generate as conformant a priori
- Where algorithms must be executed?
 - Only at network edge, i.e., when user access network?
 - Multiplexing points modify traffic shape
 - · Both at network access and internally to the network (UNI and NNI)
- Mainly preventive, but they can become reactive if QoS level may change over time

Algorithms: congestion control

- Congestion
 - Traffic excess over a given channel (link)
- Can occur due to
 - Short term traffic variability
 - Allocation policies that share resources to increase network utilization
- Congestion effects:
 - Buffer occupancy increase
 - Delay increase
- Data loss
- Needed to obtain high link utilization
- Must execute at network edge, within the network or....?
- Reactive

22