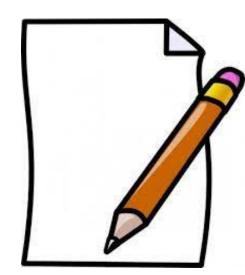
Introduction to the labs

Andrea Bianco, Paolo Giaccone http://www.telematica.polito.it/

Labs

- Lab #1
 - 3 hours
 - Configuration
 - SDN and network routing
- Lab #2
 - 3 hours
 - Performance
 - QoS support: mainly scheduling
- Lab #3
 - 3 hours
 - Detailed analysis and implementation
 - Simulation of algorithms
- It is possible to work on the labs at home
 - assistance is provided only in presence during the lab

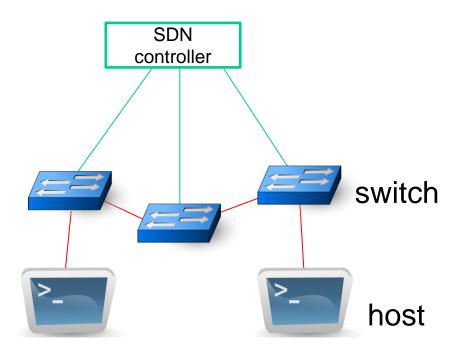

Lab logistics

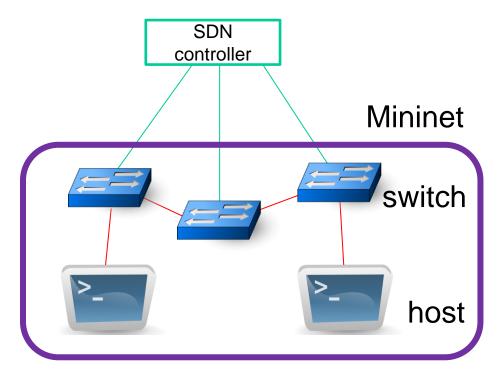
- LED2
 - 2nd floor south "scavalco" on C.so Castelfidardo
- Monday 16:00-19:00 in LED2
- Dates specified on the portale
 - November 11th, November 18th, December 9th
- Please arrive 5 minutes earlier, so you can start the lab on time
- Use crownlabs
 - Working in a virtual environment
 - Use a Linux Virtual Machine
 - Using Linux terminal and shell commands

Lab detailed instructions

3 pdf files, one for each lab

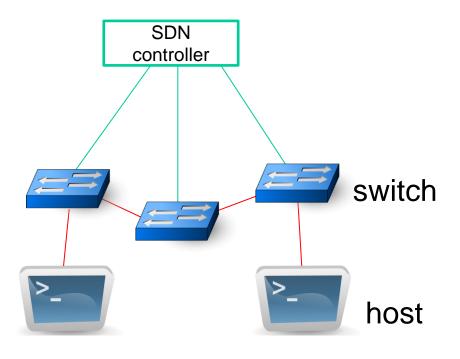
- Print the pdf at home and bring it into the lab
 - Better one copy for each student
- Bring pen and papers to take notes
 - required to be able to follow the lab
 - needed to discuss labs during oral examination

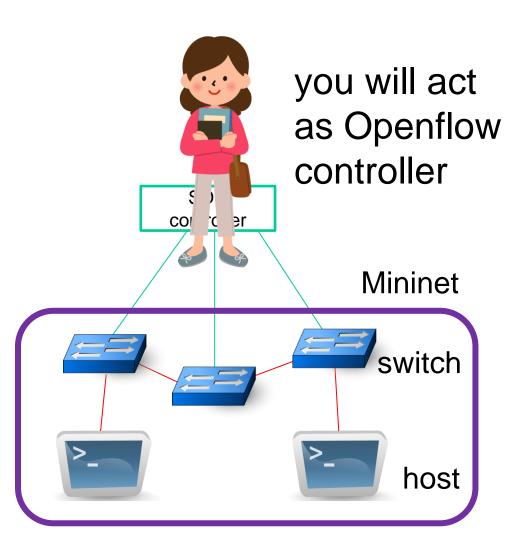

Software tools


- In crownlabs VM
 - Linux shell commands
 - Browser
 - Text editor
 - Linux network applications
 - Traffic generators

- For the first two labs
 - Main software tool: Mininet
 - SDN Network emulator

Mininet


Network emulator



Mininet

Network emulator

Mininet

- Network emulator
 - host
 - switch
 - SDN controller
- Linux container/process for each node
- Command line interface CLI
 - global commands for the emulator
 - local commands for the nodes

Mininet global commands

- nodes display nodes
 - h1 -> host 1
 - s1 -> switch 1
- links display links
 - h1-eth0<->s1-eth1
- net display a summary of all the nodes and links
 - h1 h1-eth0:s1-eth1
- dump dump information about all nodes
 - <P4Host h1: h1-eth0:10.0.0.1 pid=12345>

Mininet local commands

- local commands for the nodes
 - if the first string typed a host, switch or controller name,
 the command is executed on that node
- h1 ifconfig provides the list of the network interfaces attached to h1
- h1 ping h2 sends ICMP packets from h1 to h2
- h1 iperf3 –c 10.0.0.1 uses iperf to test the bandwidth towards 10.0.0.1
- sh allows to run a command outside mininet, while mininet is running; e.g., mininet> sh Is

Network performance tool

- iperf3 to test the available bandwidth between two hosts
- client server application
 - client: generates the traffic (TCP/UDP)
 - server: receives the traffic (TCP/UDP)
- iperf3 –c dest_IP run the test as client
- iperf3 –s run the test as server
 - by default, each host is already running it in background
- many options are available: iperf3 --help

Lab#1 – Initial step

Proceed step by step. Do not skip!

- Shell command overview
 - Shortcuts

- Become familiar with Mininet and its commands
 - two hosts and one (software) Openflow switch
 - understand the performance of software switches

Lab #1 – Single switch

- Topology discovery
 - in terms of node graph and IP addresses
- Test connectivity
- Add the proper match-action rules in the flow table to route the traffic
 - based on source port only
 - based on destination port only
- Observe the traffic through tshark
- Remind the notation: IP 1.2.3.4/24 = 1.2.3.4/255.255.255.0

Lab #1 – Linear two switches

- Topology discovery
 - in terms of node graph and IP addresses
- Test connectivity
- Fix the routing

Lab #1- Mesh topology

- Topology discovery
 - in terms of node graph and IP addresses
- Test connectivity and fix the routing
- Multipath routing
 - route UDP and TCP flows between the same pairs of hosts on different paths
- Dynamic routing
 - Flow rerouting from main path to a backup
 - "flow-mod messages" issued "by the controller"
 - investigate whether the sequence of the messages matters or not for a completely transparent rerouting process (i.e., no losses)
- Fault-tolerant rerouting (OPTIONAL)
 - detect a link failure and apply the backup path

Lab #2

- Analyze performance of various schedulers
 - FIFO, Round Robin, Weighted Round Robin, Priority
- In different scenarios
 - Underload and overload
 - Two flows
 - single bottleneck
 - Multiple flows
 - Dingle bottleneck
 - Mesh network
- Compare with max min fair solution
- Have a look at transient behaviour

Lab #3

- Analyze various schedulers
 - RR, DRR, WRR; Virtual Clock, WFQ ...
- Interactive python environment
- Need to set up some parameters to understand scheduler behaviour
- Write some code to customize scheduler behaviour