
Pag. 1

TCP congestion control

Computer Networks Design and Management - 1TNG group - Politecnico di Torino

TCP congestion control

TLC Networks Group
firstname.lastname@polito.it

http://www.tlc-networks.polito.it/

Computer Networks Design and Management - 2TNG group - Politecnico di Torino

TCP protocol

• TCP (Transmission Control Protocol)

• Already reviewed
– Fundamentals

– Port mechanism
• Socket

– Header format

Computer Networks Design and Management - 3TNG group - Politecnico di Torino

References
• Richard Stevens: TCP Illustrated

• RFC 793 (1981)
– Transmission Control Protocol

– Updated by RFC 3168 (ECN) RFC 6093, RFC 6528

• RFC 7323 (updates RFC 1323 in1992)
– TCP Extensions for High Performance

• RFC 5681 (obsoletes RFC 2581):
– TCP Congestion Control

• RFC 6582 (obsoletes RFC 3782 and RFC 2582):
– The NewReno Modification to TCP's Fast Recovery Algorithm

• RFC 2883 (obsoletes RFC 2018 defined in 1996):
– An Extension to the Selective ACKnowledgement (SACK) Option for TCP

• RFC 6298 (obsoletes RFC 2988):
– Computing TCP's Retransmission Timer

Computer Networks Design and Management - 4TNG group - Politecnico di Torino

time

source (client) destination (server)

TCP connection opening
(three-way handshake)

– Three-way handshake

– Client executes an
active open, server
executes a passive
open

– ISN (initial sequence
number) is randomly
generated

– A SYN uses one
sequence number

Computer Networks Design and Management - 5TNG group - Politecnico di Torino

close request
from application EOF to higher layers

close request
from applicationEOF to

Higher layers

source (client) destination (server)

TCP connection closing
(half-close)

Timed_wait

Computer Networks Design and Management - 6TNG group - Politecnico di Torino

Connection management: client

closed

SYN_sent

established

Time_wait

FIN_wait_2

FIN_wait_1

send SYN

receive SYN & ACK
Send ACK

Re-send if
Timeout expires
(3s+backoff)

send data;
client side ends connection
sending FIN

Re-send if timeout
expires.

receive ACK

receive FIN
send ACK

Wait for 30 s

10 minutes if
server idle

Re-send ACK
If a new FIN
arrives

Pag. 2

TCP congestion control

Computer Networks Design and Management - 7TNG group - Politecnico di Torino

Notes

• The Timed_wait state avoids that old segments
belonging to closed connections may interfere with
new connections

• Timed_wait should be “aligned” to TTL, today a
timer set to 30s is used

• During the Timed_wait state, socket (ports) cannot
be used

• BSD implementation passes from FIN_wait_2 to
closed in 10 minutes, of the server does not send
any data in the meantime

Computer Networks Design and Management - 8TNG group - Politecnico di Torino

Connection management: server

closed

listen

SYN_rcvd

last_ACK

close_wait

established

Server application
creates socket

receive SYN
send SYN & ACK Re-send if

timeout expires
(3s+backoff)

Receive FIN, send ACK
(client connection closed)

Re-send if
timeout
expires.

Receive ACK

send FIN

receive ACK

Computer Networks Design and Management - 9TNG group - Politecnico di Torino

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

FIN_WAIT_1

FIN_WAIT_2 CLOSING

TIME_WAIT

LAST_ACK

CLOSE_WAIT

Close/

ACK /

timeout after 2 segment lifetimes

FIN/ACK

FIN/ACK

Close/FIN

Close/FIN

FIN/ACK

Close/FIN

SYN/SYN+ACK

SYN+ACK /ACK

ActiveOpen/SYN

Close/PassiveOpen

FIN+ACK /ACK
ACK /

SYN/SYN+ACK
Send/SYN

ACK /

ACK /

server

clientserver

server client

server client

server client

server

client

TCP State Transition Diagram

• Example of TCP
connections
opened by the
client and
closed by the
server

Computer Networks Design and Management - 10TNG group - Politecnico di Torino

Self-clocking behavior

PrPb

Ar

Ab

RXTX

As

• Segments are spaced within a RTT according to the bottleneck
link rate

Computer Networks Design and Management - 11TNG group - Politecnico di Torino

TCP transmitter
• Fragments data application in segments

• Computes and transmits checksum over header
and data

• Window with Go BACK N retransmission (but!)

• Activates timer when sending segments:
– Unacknowledged segments induce retransmissions after

a timeout expiration

• Like any window protocol, transmission speed ruled
by window size
– Flow and congestion control

Computer Networks Design and Management - 12TNG group - Politecnico di Torino

TCP receiver
• Discards segments with CRC errors

• Stores out of sequence segments
– Selective repeat like behaviour

• Re-orders out of sequence segments
– Delivers an ordered and correct data stream to

application process

• Cumulative ACKs

• Declares in the window field of the TCP header
the amount of available buffer space to control
transmitter sending rate (flow control)

Pag. 3

TCP congestion control

Computer Networks Design and Management - 13TNG group - Politecnico di Torino

TCP receiver
• In sequence and correct segment

– Store the segment (eventually passing it to higher layer
protocols) and send a cumulative ACK

• Duplicate segment
– Discard the segment and send a cumulative ACK with the

number of the last segment received in sequence

• Segment with checksum error
– Discard the segment; no ACK sent

• Out of sequence segment
– Store the segment (non mandatory, but de facto standard)

and send a cumulative ACK with the number of the last
segment received in sequence (duplicate ACK)

Computer Networks Design and Management - 14TNG group - Politecnico di Torino

Segment sequence
number

Segments transmitted,
ACK received

Segments transmitted,
ACK not received

Segments not yet
transmitted

1 2 3 4 5 6 7 8 9 10

Segments that
cannot be transmitted

Maximum admissible window size

Transmitter window

Available window

Computer Networks Design and Management - 15TNG group - Politecnico di Torino

Transmitter window dynamics

• When an ACK referring to a new segment is
received, the transmitter window:
– Move to the right by the segment size

– It is possible to transmit a new segment

• When a new segment is transmitted, the
available window is reduced by a segment

• If the available window goes to zero,
segment transmission is stopped

Computer Networks Design and Management - 16TNG group - Politecnico di Torino

• For any window protocol, the transmission bit
rate in absence of errors is:

• “Short” connections (small RTT) obtain higher
bit rate

• To regulate transmission bit rate (objective of
both flow and congestion control), control
– Round trip time (delay ACK transmission)

• But generates retransmissions due to timer at the sender

– Transmission window size

Flow and congestion control

timetripRound
 windowonTransmissi

Computer Networks Design and Management - 17TNG group - Politecnico di Torino

Flow and congestion control
• TCP: transmitter bit rate regulated by both:

– Flow control

– Congestion control

• Flow control: avoid to saturate a slow receiver
– The receiver controls the speed of the sender

• Congestion control: avoid to saturate the network (more
precisely, the link which becomes the bottleneck link)
– The network controls the speed of the sender

– Data are stored in node buffer
• Under congestion

– Buffer occupancy increases
– Round trip increases, and bit rate decreases
– This is not enough to control congestion: packet get dropped because of

finite queue size

Computer Networks Design and Management - 18TNG group - Politecnico di Torino

Flow and congestion control

• TCP transmitter window size is regulated:
– Flow control: receiver declares the available window size

(rwnd) (available receiver buffer)
– Congestion control: the transmitter computes a

congestion window (cwnd) value as a function of
segment losses detected by missing ACKs

• Timeout expiration
• Duplicate ACKs

• The actual transmitter window size is the minimum
between the two above values

transmission window= min(cwnd, rwnd)

timetripRound
 windowonTransmissi

Pag. 4

TCP congestion control

Computer Networks Design and Management - 19TNG group - Politecnico di Torino
Reception buffer

TCP flow control

• TCP receiver explicitly declares the available
buffer space (which varies over time)
– RcvWindow or rwnd field in the TCP header

• TCP transmitter window (amount of data sent
without receiving ACKs) never exceeds the
declared receiver window size (in bytes)

Computer Networks Design and Management - 20TNG group - Politecnico di Torino

Impact of flow control

• One TCP sender

• Limited RWND at the receiver

• Line speed C=100Mb/s

• Increasing RTT

• What is the maximum throughput that can be
obtained?

Computer Networks Design and Management - 21TNG group - Politecnico di Torino

Impact of RWND

Computer Networks Design and Management - 22TNG group - Politecnico di Torino

TCP window scaling option
• The RWND field is 16 bit => MaxRWND = 216=64kB

• This limits the throughput to

Throughput <= 64kB/RTT

• To allow faster throughput on high speed/large RTT paths,
scale the window (RFC 1323)
– During the three way handshake, the client and server agree on a

scaling factor

– Uses option field in TCP header

• Default for modern OSes
– Only Windows XP did not enable this by default

– Can limit the download speed even on a 20Mb/s ADSL line

Computer Networks Design and Management - 23TNG group - Politecnico di Torino

TCP congestion control
• Originally (<1988) TCP was relying only on the window

control operated by the receiver to enforce flow control
– Relatively lightly loaded networks

– TCP connection limited by the receiver speed

• Congestion effect is segment drops, which implies
throughput reduction due to frequent retransmissions

• Goals of congestion control
– Adjusting to the bottleneck bandwidth

– Adjusting to bandwidth variations

– Fairly sharing bandwidth between flows

– Maximizing throughput

Computer Networks Design and Management - 24TNG group - Politecnico di Torino

TCP congestion control
• Besides the limitation imposed by the receiver through the

receiver window (rwnd), the TCP transmitter controls the
network congestion through the congestion window (cwnd)

• TCP transmitter can send up to B bytes without receiving an
ACK, where

B = min (rwnd, cwnd)

• Several versions of TCP congestion control defined to
compute cwnd
– Reno (NewReno)

– SACK

– BIC and CUBIC

– Many others (Tahoe, Vegas, Westwood, fastTCP, highspeedTCP,…)

Pag. 5

TCP congestion control

Computer Networks Design and Management - 25TNG group - Politecnico di Torino

Congestion Window (cwnd)
• Limits amount of in transit data

• Measured in bytes
wnd = min(cwnd, rwnd)

effective_wnd = wnd –

(last_byte_sent – last_byte_acked);

last_byte_acked last_byte_sent

wnd

effective_wnd

Computer Networks Design and Management - 26TNG group - Politecnico di Torino

TCP congestion control
• Obvious idea

– Try to adapt rate to available resources

– Increase rate (cwnd) when not congested

– Decrease rate (cwnd) when congestion detected

• Issues
– How much to decrease/increase?

– How to detect congestion?
• Packet loss => congestion

– Timeout expiration
– Duplicate ACKs

– Need to probe for available bandwidth
• How to start?

• How to proceed when congestion is detected?

– Must work for greedy source but also for …. (e.g. telnet)

Computer Networks Design and Management - 27TNG group - Politecnico di Torino

Utilization and Fairness

Connection 1 ThroughputC
o

n
n

e
ct

io
n

2

 T
h

ro
u

g
h

p
u

t

Max
throughput

Less than full
utilization

Ideal point
• Max efficiency
• Perfect fairness

Equal
throughput
(fairness)

More than full
utilization

(congestion)

Computer Networks Design and Management - 28TNG group - Politecnico di Torino

Multiplicative Increase
Additive Decrease

• Not stable!

• Moves away from
fairness

Connection 1 Throughput

C
o

n
n

e
ct

io
n

2

 T
h

ro
u

gh
p

u
t

Computer Networks Design and Management - 29TNG group - Politecnico di Torino

Additive Increase
Additive Decrease

• Stable

• But does not
converge to fairness

Connection 1 Throughput

C
o

n
n

e
ct

io
n

 2
 T

h
ro

u
g

h
p

u
t

Computer Networks Design and Management - 30TNG group - Politecnico di Torino

Multiplicative Increase
Multiplicative Decrease

• Stable

• Does not converge
to fairness

Connection 1 Throughput

C
o

n
n

e
ct

io
n

 2
 T

h
ro

u
g

h
p

ut

Pag. 6

TCP congestion control

Computer Networks Design and Management - 31TNG group - Politecnico di Torino

Additive Increase
Multiplicative Decrease

• Stable

• Converges to ideal
working point

• AIMD algorithm

Connection 1 Throughput

C
o

n
n

e
ct

io
n

 2
 T

h
ro

u
g

h
p

u
t

Computer Networks Design and Management - 32TNG group - Politecnico di Torino

TCP congestion control algorithm
• Tahoe version (1988)

• Maintains an additional variable (besides cwnd and rwnd)
– ssthresh: threshold

– Heuristically set to represent an “optimal” window value

• Two phases of congestion control
– Slow start (cwnd < ssthresh)

• Probe for bottleneck bandwidth

– Congestion avoidance (cwnd >= ssthresh)
• Probe for bottleneck bandwidth

• AIMD

• Note: algorithm description assumes for simplicity that each
TCP segment has a size equal to 1 MSS

Computer Networks Design and Management - 33TNG group - Politecnico di Torino

Slow Start agorithm
• Main ideas

– Run when cwnd<ssthresh

– Starts at slow pace but increase fast

• At connection startup
– cwnd = 1 segment (more precisely, cwnd=1MSS)

– sstresh = rwnd

• For each in sequence ACK received, cwnd = cwnd + 1MSS

• Exponential window growth
– For each RTT, cwnd size doubles

– Not slow!

• Continues until
– ssthresh is reached

– A segment is lost
Computer Networks Design and Management - 34TNG group - Politecnico di Torino

Slow Start algorithm

Host A

R
T

T

Host B

time

Computer Networks Design and Management - 35TNG group - Politecnico di Torino

Slow Start: example

Computer Networks Design and Management - 36TNG group - Politecnico di Torino

Congestion Avoidance algorithm
• Main ideas

– Run when cwnd>=ssthresh

– Slow down window growth but keep increasing to probe
for additional available bandwidth

• For each in sequence ACK received
– cwnd = cwnd + 1/ cwnd or

– cwnd = cwnd + MSS/ cwnd (in byte)

• Linear window growth
– Every RTT, the window increases by 1 MSS in absence

of losses

– ADDITIVE increase

• Continues until a segment is lost

Pag. 7

TCP congestion control

Computer Networks Design and Management - 37TNG group - Politecnico di Torino

Congestion Avoidance: example

Computer Networks Design and Management - 38TNG group - Politecnico di Torino

If one segment is lost…

• …congestion indication
– Transmitter bit rate overcame available bit rate

• Main ideas:
– TCP transmitter re-send the missing segment if

the proper ACK is not received within the timeout
expiration (“all segments lost” is a severe
congestion scenario)

– Reset the window value (cwnd=1)

– Set the threshold to half the current window to
ensure a fast cwnd increase

• ssthresh = max(min(cwdn,rwnd)/2,2),

Computer Networks Design and Management - 39TNG group - Politecnico di Torino

1) cwnd = 1 MSS
ssthresh = rwnd

2) cwnd = cwnd + 1 for each ACK until
cwnd > ssthresh (goto 3)

if timeout expires:
ssthresh = min(cwnd,rwnd)/2
cwnd = 1
goto 2)

3) cwnd = cwnd + 1/ cwnd for each ACK
if timeout expires:

ssthresh = min(cwnd,rwnd)/2
cwnd = 1
goto 2)

SLOW START

CONGESTION
AVOIDANCE

Summary

Computer Networks Design and Management - 40TNG group - Politecnico di Torino

Summary

5

10

15

20

cw
n

d

Time [RTT]

ssthresh

slow start

congestion
avoidance

Computer Networks Design and Management - 41TNG group - Politecnico di Torino

Fast Retransmit and Fast Recovery

• Further modification to the congestion control
algorithm proposed in 1990 (RFC 2001,
Stevens)

• It allows the “immediate” retransmission of a
single segment lost (Fast Retransmit)
– Single segment loss is an indication of mild

congestion

• …and avoids to re-start the algorithm in the
Slow Start phase when a single segment
was lost (Fast Recovery)

Computer Networks Design and Management - 42TNG group - Politecnico di Torino
Gruppo Reti - Politecnico di Torino

Fast Retransmit
• Observe duplicate ACKs

– If few duplicate ACKs, it may be an out of order
segments delivery

– If more duplicate ACKs are lost, strong indication
of segment loss

• However, since duplicate ACKs are received at the
transmitter, other segments were received, which
implies mild congestion

• If three duplicate ACKs are received, re-
transmit the missing segment without waiting
for timeout expiration (Fast Retransmit)

Pag. 8

TCP congestion control

Computer Networks Design and Management - 43TNG group - Politecnico di Torino

Fast Retransmit: example

Computer Networks Design and Management - 44TNG group - Politecnico di Torino

Fast Recovery
• When congestion detected, go into congestion avoidance

phase, and avoids slow start

• When the 3rd duplicate ACK is received:
– ssthresh = min(cwnd,rwnd)/2

– re-transmit the missing segment

– cwnd=ssthresh+3
• To keep constant the number of segments in the pipe

• For each successive duplicate ACK
– cwnd=cwnd+1

– enable segment transmission also during Fast Recovery

• When an ACK confirms the missing segment:
– cwnd=ssthresh

– cwnd=cwnd+1/cwnd for each correct and in sequence ACK

Computer Networks Design and Management - 45TNG group - Politecnico di Torino

Fast Recovery: example

Computer Networks Design and Management - 46TNG group - Politecnico di Torino

Summary

5

10

15

20

cw
n

d

Time [RTT]

ssthresh

slow start

congestion
avoidance

Computer Networks Design and Management - 47TNG group - Politecnico di Torino

Summary

5

10

15

20

cw
n

d

Time [RTT]

ssthresh

slow start

congestion
avoidance

Gain with respect
To SS + CA

Computer Networks Design and Management - 48TNG group - Politecnico di Torino

Fast Retransmit and Fast Recovery

• At steady state, cwnd oscillates around the
optimal window size

• TCP always forces packet drops

Time

cw
n

d

Timeout

Slow Start

Congestion Avoidance
Fast Retransmit/Recovery

ssthresh

Timeout

Pag. 9

TCP congestion control

Computer Networks Design and Management - 49TNG group - Politecnico di Torino

TCP versions

• TCP Tahoe (Included in 4.3BSD Unix)
– Originally proposed by Van Jacobson

• Slow start

• Congestion avoidance

• Fast retransmit

• TCP Reno (Proposed in 1990)
– All TCP Tahoe algorithms

– Adds
• Fast-recovery

• Delayed ACKs

• Header prediction to improve performance in HW
Computer Networks Design and Management - 50TNG group - Politecnico di Torino

TCP Reno: Delayed ACK
• Motivations to delay ACK transmission

– To reduce the number of ACKs sent (reduce control traffic)

– To exploit piggybacking to send ACKs
• The application may create data as a response to received

segment

– To declare a larger rwnd
• The receiver may empty the reception buffer, declaring larger

available window rwnd

• Disadvantages
– Increases connection RTT (Round Trip Time)

– Window growth is slowed down

Computer Networks Design and Management - 51TNG group - Politecnico di Torino

Delayed ACK: RFC

• The delayed ACK algorithm (RFC 1122,
1989) SHOULD be used by a TCP receiver.
When used, a TCP receiver MUST NOT
excessively delay acknowledgments.
Specifically, an ACK SHOULD be generated
for at least every second full-sized segment,
and MUST be generated within 500ms of the
arrival of the first unacknowledged segment.

• Out-of-order data segments SHOULD be
acknowledged immediately, to accelerate
loss recovery.

Computer Networks Design and Management - 52TNG group - Politecnico di Torino

Delayed ACK : algorithm

• ACKs are sent
– either every 2 received-in-sequence segments

• Window growth halved

– or 200ms after segment reception

• Immediate ACK transmission only for out-of-
sequence segments
– Send ACK for the last in sequence and correctly

received segment
• Generates duplicate ACKs

Computer Networks Design and Management - 53TNG group - Politecnico di Torino

TCP ACK generation
[RFC 1122, RFC 2581]

Event

in-order segment arrival,
no gaps,
everything else already acked

in-order segment arrival,
no gaps,
one delayed ACK pending

out-of-order segment arrival
higher-than-expect seq. #
gap detected

arrival of segment that
partially or completely fills gap

TCP Receiver action

delayed ACK . Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single
cumulative ACK

send duplicate ACK, indicating seq. #
of next expected byte

immediate ACK if segment starts
at lower end of gap

Computer Networks Design and Management - 54TNG group - Politecnico di Torino

TCP NewReno
• RFC2582, proposed in 1999

• Solves the TCP-Reno problem
– Multiple segment drops make useless the fast recovery-

fast retransmit mechanism

• Considers partial ACKs reception during a Fast
Recovery as a signal of loss of another segment
– Retransmits immediately

• A new status variable, named recovery, is needed

• When ACK received
– The Fast Recovery phase is declared ended

Pag. 10

TCP congestion control

Computer Networks Design and Management - 55TNG group - Politecnico di Torino

TCP NewReno

• When the 3rd consecutive duplicate ACK is
received :
– ssthresh = min(cwnd,rwnd)/2

– Recovery=highest sequence number transmitted

– Retransmit the missing segment

– cwnd=ssthresh+3

• For each successive duplicate ACK
– cwnd=cwnd+1

– Send new segments if possible

Computer Networks Design and Management - 56TNG group - Politecnico di Torino

TCP NewReno
• When an ACK which confirms the missing segment

is received:
– If ACK > recovery, then

• cwnd=ssthresh

• Fast Recovery procedure ends

– Else [partial ACK]
• Shrink transmission window by an amount equal to the confirmed

segment size

• cwnd=cwnd+1

• Send new segments if cwnd permits

Computer Networks Design and Management - 57TNG group - Politecnico di Torino

TCP SACK
• RFC 2018 - 1996

• Introduces selective acknowledge in ACK
– It changes the semantic and format of ACKs

• Must be negotiated by TCP transmitter and receiver
– Must understand the new format

• Exploits Option field in TCP header to transport SACK
information
– The receiver tells the sender what it has and what it is missing

• More than one segment per RTT can be retransmitted
– The sender can then retransmit the missing segments in a single

RTT

Computer Networks Design and Management - 58TNG group - Politecnico di Torino

TCP SACK
• +--------+--------+
• | Kind=5 | Length |
• +--------+--------+--------+--------+
• | Left Edge of 1st Block |
• +--------+--------+--------+--------+
• | Right Edge of 1st Block |
• +--------+--------+--------+--------+
• | |
• / . . . /
• | |
• +--------+--------+--------+--------+
• | Left Edge of nth Block |
• +--------+--------+--------+--------+
• | Right Edge of nth Block |
• +--------+--------+--------+--------+

• A block represents a
contiguous sequence of
bytes correctly received
and buffered at the receiver

• The receiver sends SACK
info only if some out of
sequence segments were
received

• May be used to indicate
duplicated segments

Computer Networks Design and Management - 59TNG group - Politecnico di Torino

TCP variants today
• The most popular version try to address three key problems

– TCP poor performance on high bandwidth-delay product network
• How much time is needed to increase cwnd on a 1Gbps link from half

utilization to full utilization?
– Using 1500-byte PDU and 100 ms RTT

– Full utilization cwnd = 1Gbps/1500byte ~= 8333 segments

– Half utilization cwnd = 8333/2 = 4166 segments

– cwnd is increased by 1 for each RTT

» 4167 RTTs are needed to fully utilized the link

» 4167 RTT * 100ms(RTT time) = 6.95minutes

– TCP throughput depends on RTT
• Keep a separate delay based window (Microsoft Windows solution)

– Vast majority of Internet traffic is made by short flows (e.g., HTTP)
• Most TCP flows never leave slow start!

• Increase initial cwnd to 10 (Google, RFC 6928 – 2013)

Computer Networks Design and Management - 60TNG group - Politecnico di Torino

TCP today
• Compound TCP (Windows)

– Based on Reno

– Uses two congestion windows: delay based and
loss based

– Thus, it uses a compound congestion controller

• TCP CUBIC (Linux)
– Enhancement of BIC (Binary Increase

Congestion Control)

– Window size controlled by cubic function

– Parameterized by the time T since the last
dropped packet

Pag. 11

TCP congestion control

Computer Networks Design and Management - 61TNG group - Politecnico di Torino

High Bandwidth-Delay Product
• Key Problem: TCP performs poorly when

– The capacity of the network (bandwidth) is large

– The delay (RTT) of the network is large

– Or, when bandwidth * delay is large
• b * d = maximum amount of in-flight data in the network

• a.k.a. the bandwidth-delay product

• Why does TCP perform poorly?
– Slow start and additive increase are slow to converge

– TCP is ACK clocked
• i.e. TCP can only react as quickly as ACKs are received

• Large RTT  ACKs are delayed  TCP is slow to react

Computer Networks Design and Management - 62TNG group - Politecnico di Torino

Poor Performance of TCP Reno

Bottleneck Bandwidth (Mb/s)

50 flows in both directions
Buffer = BW x Delay

RTT = 80 ms

Round Trip Delay (sec)

50 flows in both directions
Buffer = BW x Delay

BW = 155 Mb/s

Computer Networks Design and Management - 63TNG group - Politecnico di Torino

Goals
• Speed up cwnd growth

– Slow start and additive increase are too slow when
bandwidth-delay is large

– Want to converge more quickly

• Maintain fairness with other TCP variants
– Window growth cannot be too aggressive

• Improve RTT fairness
– TCP Tahoe/Reno flows are not fair when RTTs vary

widely

• Simple implementation

Computer Networks Design and Management - 64TNG group - Politecnico di Torino

Compound TCP Implementation
• Default TCP implementation in Windows

• Key idea: split cwnd into two separate windows
– Traditional, loss-based window

– New, delay-based window

• wnd = min(cwnd + dwnd, rwnd)
– cwnd is controlled by AIMD

– dwnd is the delay window

• Rules for adjusting dwnd:
– If RTT is increasing, decrease dwnd (dwnd >= 0)

– If RTT is decreasing, increase dwnd

– Increase/decrease are proportional to the rate of change

Computer Networks Design and Management - 65TNG group - Politecnico di Torino

Low
RTT

High
RTT

Compound TCP Example

• Advantages: fast ramp up, more fair to flows with different
RTTs

• Disadvantage: must estimate RTT

Time

cw
n

d

Timeout

Slow Start

Timeout
Slower
cwnd

growth

Faster
cwnd

growth

Computer Networks Design and Management - 66TNG group - Politecnico di Torino

TCP CUBIC Implementation

Pag. 12

TCP congestion control

Computer Networks Design and Management - 67TNG group - Politecnico di Torino

TCP CUBIC

Packet loss
event

Time

Steady State Behavior

Max Probing

Wmax

Around CWNDmax, window growth
almost becomes zeroFast growth upon

reduction

Cubic starts probing for
more Bandwidth

Computer Networks Design and Management - 68TNG group - Politecnico di Torino

TCP CUBIC Example

• Less wasted bandwidth due to fast ramp up

• Stable region and slow acceleration help maintain fairness
– Fast ramp up is more aggressive than additive increase

Time

cw
n

d

Timeout

Slow Start

CUBIC Function

cwndmax

Fast
ramp up

Stable
Region

Slowly accelerate to
probe for bandwidth

Computer Networks Design and Management - 69TNG group - Politecnico di Torino

Timeout setting and RTT estimation

• The timeout value is essential to obtain an efficient
ARQ mechanism

• Timeout cannot be smaller than 200ms (delayed
ACK and transmitter clock granularity)

• The timeout should be a function of connection
RTT, which varies over time, depending on network
load (and queueing delay)

• A round trip time estimate is needed to set a proper
timeout value

Computer Networks Design and Management - 70TNG group - Politecnico di Torino

Timeout setting
• For each transmitted segment, compute the time

difference M between segment transmission and
corresponding ACK reception
– Instantaneous RTT sample

M=t_ack-t_segment

• RTT estimate by weighting through an exponential
filter with coefficient :
– RTT=*RTT+(1-)*M (=0.875)

• Timeout (RTO) set to:
– RTO=  *RTT ( >1, typically 2)

Computer Networks Design and Management - 71TNG group - Politecnico di Torino

Problems in RTT estimate

• Re-transmitted segment: RTT estimate?

X

XRTT
estimation

RTT estimate
may increase
without bound if
associating the
ACK to the first
segment
transmission!!

T.O.

T.O.

Computer Networks Design and Management - 72TNG group - Politecnico di Torino

Problems in RTT estimate

• Re-transmitted segment: RTT estimate?

RTT
estimation

RTT estimation too
small if associating
the ACK to
segment re-
transmission!

T.O.

Pag. 13

TCP congestion control

Computer Networks Design and Management - 73TNG group - Politecnico di Torino
Gruppo Reti - Politecnico di Torino

Exponential backoff
on the timeout value

• RTT samples of re-transmitted segment may
provide a wrong estimante

• Karn algorithm:
– RTT estimate is not modified unless an ACK for a non

retransmitted segment is received
• Not enough! Indeed, if then RTT increase, a new RTT estimate is

never obtained since all segment are re-transmitted

– Increase timeout value according to an exponential
backoff algorithm for each lost segment, since the RTT
estimate is not reliable

• Sooner or later the timeout will assume a value larger than the
current RTT; and a new RTT estimate is obtained

Computer Networks Design and Management - 74TNG group - Politecnico di Torino
Gruppo Reti - Politecnico di Torino

Problems in RTT estimate

• Delay variations may create fluctuations on
RTT estimate
– Use more complex formulas to estimate RTT

– Take into account the average estimation error
(RFC6298 – 2011, RFC2988 – 2000)

• timeout=average+4*standard_deviation

Computer Networks Design and Management - 75TNG group - Politecnico di Torino

Jacobson/Karels Algorithm

• New proposal for RTT estimation
– Diff = SampleRTT - EstimatedRTT

– EstimatedRTT = EstimatedRTT + ( Diff)

– Deviation = Deviation + (|Diff|- Deviation)

– Where  ranges from 0 to 1

• Standard deviation is considered when
computing RTO
– RTO =  EstimatedRTT +  Deviation

where  = 1 and  = 4

Computer Networks Design and Management - 76TNG group - Politecnico di Torino

Notes on RTT estimate
• Estimate is always constrained by timer

granularity (10ms on recent systems, 200ms
on older systems)
– The RTT may be comparable with timer

granularity (RTT=100-200ms for long distance
connections)

• Accuracy in RTT estimation is fundamental
to obtain an efficient congestion control
(avoids useless re-transmissions or
excessively long waits)

Computer Networks Design and Management - 77TNG group - Politecnico di Torino

Timeout setting: problems
• Initial value?

• Since an RTT estimation is missing, the
initial timeout value is chosen according to a
conservative approach
– Initial timeout set to 1s (RFC6298)

• TCP connections are very sensible to the
first segment loss since the timeout value is
large

Computer Networks Design and Management - 78TNG group - Politecnico di Torino

Silly Window Syndrome
• Excessive overhead problem due to

– Slow receivers or

– Transmitter sending only small segments

• If the receiver buffer fills up, the receiver
declares increasingly smaller rwnd

• The transmitter sends tinygrams if the
applications generates few data (e.g., telnet
application)

Pag. 14

TCP congestion control

Computer Networks Design and Management - 79TNG group - Politecnico di Torino

TCP connections for telnet traffic

• Telnet application
– When pressing a key on the terminal keyboard

– A TCP segment TCP of 1B is sent in a dedicated
IP datagram: (20B+20B)header +1B data

• Even worse, if local echo disabled, 4 1B
segments are sent: key + ACK + echo +
ACK

• Exploiting piggybacking of the first ACK on
the echo segment, one segment is saved
– Delayed ACK helps

Computer Networks Design and Management - 80TNG group - Politecnico di Torino

Silly Window Syndrome avoidance

• At the receiver side:
– Declare the new available receiver window only

if equal to
• 1 MSS or

• Half of the receiver buffer

– Delayed acknowledgment

• At transmitter side:
– Nagle algorithm

Computer Networks Design and Management - 81TNG group - Politecnico di Torino

Nagle algorithm (RFC 896)

• When opening the connection, all data in the
transmission buffer are sent

• Then, wait for
– at least 1 MSS data in the transmission buffer or

– ACK reception

• A host never has more than one tinygram
without an ACK

Computer Networks Design and Management - 82TNG group - Politecnico di Torino

Nagle algorithm

• When running a telnet application, successive
characters following the first one are collected in a
single segment, sent after receiving the first ACK

• Ftp, smtp, http connections are not penalized
• The number of tinygrams is drastically reduced
• Is congestion friendly

– Being ACK clocked, when the network is lightly loaded ACKs
are frequently and fastly received and segment transmission
is speeded-up

– When network becomes congested, ACKs are delayed and
less segments are sent

