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TCP protocol

• TCP (Transmission Control Protocol ) 

• Already reviewed
– Fundamentals

– Port mechanism
• Socket

– Header format
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References
• Richard Stevens: TCP Illustrated

• RFC 793 (1981)
– Transmission Control Protocol 

– Updated by RFC 3168 (ECN) RFC 6093, RFC 6528

• RFC 7323 (updates RFC 1323 in1992)
– TCP Extensions for High Performance

• RFC 5681 (obsoletes RFC 2581):
– TCP Congestion Control 

• RFC 6582 (obsoletes RFC 3782 and RFC 2582): 
– The NewReno Modification to TCP's Fast Recovery Algorithm

• RFC 2883 (obsoletes RFC 2018 defined in 1996):
– An Extension to the Selective ACKnowledgement (SACK ) Option for TCP

• RFC 6298 (obsoletes RFC 2988): 
– Computing TCP's Retransmission Timer
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time

source (client)                        destination (server)

TCP connection opening
(three-way handshake)

– Three-way handshake

– Client executes an 
active open, server 
executes  a passive 
open

– ISN (initial sequence 
number) is randomly 
generated

– A SYN uses one 
sequence number
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close request 
from application EOF  to higher layers

close request
from applicationEOF  to

Higher layers

source (client)                                     destination (server)

TCP connection closing 
(half-close)

Timed_wait
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Connection management: client

closed

SYN_sent

established

Time_wait

FIN_wait_2

FIN_wait_1

send SYN

receive SYN & ACK 
Send ACK 

Re-send if
Timeout expires
(3s+backoff)

send data;
client side ends connection 
sending FIN

Re-send if timeout 
expires.

receive ACK 

receive FIN
send ACK 

Wait for 30 s

10 minutes if
server idle

Re-send ACK 
If a new FIN 
arrives
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Notes

• The Timed_wait state avoids that old segments 
belonging to closed connections may interfere with 
new connections

• Timed_wait should be “aligned” to TTL, today a 
timer set to 30s is used

• During the Timed_wait state, socket (ports) cannot 
be used

• BSD implementation passes from FIN_wait_2 to 
closed in 10 minutes, of the server does not send 
any data in the meantime
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Connection management: server

closed

listen

SYN_rcvd

last_ACK 

close_wait

established

Server application
creates socket

receive SYN
send SYN & ACK Re-send if 

timeout expires
(3s+backoff)

Receive FIN, send ACK 
(client connection  closed)

Re-send if 
timeout 
expires.

Receive ACK 

send FIN

receive ACK 
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CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

FIN_WAIT_1

FIN_WAIT_2 CLOSING

TIME_WAIT

LAST_ACK 

CLOSE_WAIT

Close/

ACK /

timeout after 2 segment lifetimes

FIN/ACK 

FIN/ACK 

Close/FIN

Close/FIN

FIN/ACK 

Close/FIN

SYN/SYN+ACK 

SYN+ACK /ACK 

ActiveOpen/SYN

Close/PassiveOpen

FIN+ACK /ACK 
ACK /

SYN/SYN+ACK 
Send/SYN

ACK /

ACK /

server

clientserver

server client

server client

server client

server

client

TCP State Transition Diagram

• Example of TCP 
connections 
opened by the 
client and 
closed by the 
server
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Self-clocking behavior

PrPb

Ar

Ab

RXTX

As

• Segments are spaced within a RTT according to the bottleneck 
link rate
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TCP transmitter
• Fragments data application in segments

• Computes and transmits checksum over header 
and data

• Window with Go BACK  N retransmission (but!)

• Activates timer when sending segments: 
– Unacknowledged segments induce retransmissions after 

a timeout expiration

• Like any window protocol, transmission speed ruled 
by window size
– Flow and congestion control
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TCP receiver
• Discards segments with CRC errors 

• Stores out of sequence segments
– Selective repeat like behaviour

• Re-orders out of sequence segments
– Delivers an ordered and correct data stream to 

application process

• Cumulative ACKs 

• Declares in the window field of the TCP header 
the amount of available buffer space to control 
transmitter sending rate (flow control)
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TCP receiver
• In sequence and correct segment

– Store the segment (eventually passing it to higher layer 
protocols) and send a cumulative ACK 

• Duplicate segment
– Discard the segment and send a cumulative ACK  with the 

number of the last segment received in sequence

• Segment with checksum error
– Discard the segment; no ACK  sent

• Out of sequence segment
– Store the segment (non mandatory, but de facto standard) 

and send a cumulative ACK  with the number of the last 
segment received in sequence (duplicate ACK )
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Segment sequence 
number

Segments transmitted, 
ACK  received

Segments transmitted, 
ACK  not received

Segments not yet 
transmitted

1 2 3 4 5 6       7 8 9 10

Segments that 
cannot be transmitted

Maximum admissible window size

Transmitter window

Available window
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Transmitter window dynamics

• When an ACK  referring to a new segment is 
received, the transmitter window:
– Move to the right by the segment size

– It is possible to transmit a new segment

• When a new segment is transmitted, the 
available window is reduced by a segment

• If the available window goes to zero, 
segment transmission is stopped
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• For any window protocol, the transmission bit 
rate in absence of errors is: 

• “Short” connections (small RTT) obtain higher 
bit rate

• To regulate transmission bit rate (objective of 
both flow and congestion control), control
– Round trip time (delay ACK transmission)

• But generates retransmissions due to timer at the sender

– Transmission window size

Flow and congestion control

timetripRound
 windowonTransmissi
    

Computer Networks Design and Management - 17TNG group - Politecnico di Torino

Flow and congestion control
• TCP: transmitter bit rate regulated by both:

– Flow control

– Congestion control

• Flow control: avoid to saturate a slow receiver
– The receiver controls the speed of the sender

• Congestion control: avoid to saturate the network  (more 
precisely, the link which becomes the bottleneck link)
– The network controls the speed of the sender

– Data are stored in node buffer
• Under congestion

– Buffer occupancy increases
– Round trip increases, and bit rate decreases
– This is not enough to control congestion: packet get dropped because of 

finite queue size
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Flow and congestion control

• TCP transmitter window size is regulated:
– Flow control: receiver declares the available window size 

(rwnd) (available receiver buffer)
– Congestion control: the transmitter computes a 

congestion window (cwnd) value as a function of 
segment losses detected  by missing ACKs

• Timeout expiration
• Duplicate ACKs

• The actual transmitter window size is the minimum 
between the two above values

transmission window= min(cwnd, rwnd)

timetripRound
 windowonTransmissi
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Reception buffer

TCP flow control

• TCP receiver explicitly declares the available 
buffer space (which varies over time)
– RcvWindow or rwnd field in the TCP header

• TCP transmitter window (amount of data sent 
without receiving ACKs) never exceeds the 
declared receiver window size (in bytes)
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Impact of flow control

• One TCP sender

• Limited RWND at the receiver

• Line speed C=100Mb/s

• Increasing RTT

• What is the maximum throughput that can be 
obtained?
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Impact of RWND
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TCP window scaling option
• The RWND field is 16 bit => MaxRWND = 216=64kB

• This limits the throughput to 

Throughput <= 64kB/RTT

• To allow faster throughput on high speed/large RTT paths, 
scale the window (RFC 1323)
– During the three way handshake, the client and server agree on a 

scaling factor

– Uses option field in TCP header

• Default for modern OSes
– Only Windows XP did not enable this by default

– Can limit the download speed even on a 20Mb/s ADSL line
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TCP congestion control
• Originally (<1988) TCP was relying only on the window 

control operated by the receiver to enforce flow control
– Relatively lightly loaded networks

– TCP connection limited by the receiver speed

• Congestion effect is segment drops, which implies 
throughput reduction due to frequent retransmissions

• Goals of congestion control
– Adjusting to the bottleneck bandwidth

– Adjusting to bandwidth variations

– Fairly sharing bandwidth between flows

– Maximizing throughput
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TCP congestion control
• Besides the limitation imposed by the receiver through the 

receiver window (rwnd), the TCP transmitter controls the 
network congestion through the congestion window (cwnd)

• TCP transmitter can send up to B bytes without receiving an 
ACK, where

B = min (rwnd, cwnd)

• Several versions of TCP congestion control defined to 
compute cwnd
– Reno (NewReno)

– SACK

– BIC and CUBIC

– Many others (Tahoe, Vegas, Westwood, fastTCP, highspeedTCP,…)
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Congestion Window (cwnd)
• Limits amount of in transit data

• Measured in bytes
wnd = min(cwnd, rwnd)

effective_wnd = wnd –

(last_byte_sent – last_byte_acked);

last_byte_acked last_byte_sent

wnd

effective_wnd
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TCP congestion control
• Obvious idea

– Try to adapt rate to available resources

– Increase rate (cwnd) when not congested

– Decrease rate (cwnd) when congestion detected

• Issues
– How much to decrease/increase?

– How to detect congestion?
• Packet loss => congestion

– Timeout expiration
– Duplicate ACKs

– Need to probe for available bandwidth
• How to start?

• How to proceed when congestion is detected?

– Must work for greedy source but also for …. (e.g. telnet)
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Utilization and Fairness
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Max 
throughput

Less than full 
utilization

Ideal point
• Max efficiency
• Perfect fairness

Equal 
throughput
(fairness)

More than full 
utilization 

(congestion)
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Multiplicative Increase
Additive Decrease

• Not stable!

• Moves away from 
fairness
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Additive Increase
Additive Decrease

• Stable

• But does not 
converge to fairness
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Multiplicative Increase
Multiplicative Decrease

• Stable

• Does not converge 
to fairness
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Additive Increase
Multiplicative Decrease

• Stable

• Converges to ideal 
working point

• AIMD algorithm
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TCP congestion control algorithm
• Tahoe version (1988)

• Maintains an additional variable (besides cwnd and rwnd)
– ssthresh:  threshold 

– Heuristically set to represent an “optimal” window value

• Two phases of congestion control
– Slow start (cwnd < ssthresh)

• Probe for bottleneck bandwidth

– Congestion avoidance (cwnd >= ssthresh)
• Probe for bottleneck bandwidth

• AIMD

• Note: algorithm description assumes for simplicity that each 
TCP segment has a size equal to 1 MSS
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Slow Start agorithm
• Main ideas

– Run when cwnd<ssthresh

– Starts at slow pace but increase fast

• At connection startup
– cwnd = 1 segment (more precisely, cwnd=1MSS)

– sstresh = rwnd 

• For each in sequence ACK received, cwnd = cwnd + 1MSS

• Exponential window growth
– For each RTT, cwnd size doubles

– Not slow!

• Continues until 
– ssthresh is reached

– A segment is lost
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Slow Start algorithm

Host A

R
T

T

Host B

time
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Slow Start: example
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Congestion Avoidance algorithm
• Main ideas

– Run when cwnd>=ssthresh

– Slow down window growth but keep increasing to probe 
for additional available bandwidth

• For each in sequence ACK received
– cwnd = cwnd + 1/ cwnd or

– cwnd = cwnd + MSS/ cwnd (in byte)

• Linear window growth
– Every RTT, the window increases by 1 MSS in absence 

of losses

– ADDITIVE increase

• Continues until a segment is lost
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Congestion Avoidance: example
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If one segment is lost…

• …congestion indication
– Transmitter bit rate overcame available bit rate

• Main ideas:
– TCP transmitter re-send the missing segment if 

the proper ACK is not received within the timeout 
expiration (“all segments lost” is a severe 
congestion scenario)

– Reset the window value (cwnd=1)

– Set the threshold to half the current window to 
ensure a fast cwnd increase

• ssthresh = max(min(cwdn,rwnd)/2,2), 
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1) cwnd = 1 MSS 
ssthresh = rwnd

2)  cwnd = cwnd + 1 for each ACK  until
cwnd > ssthresh (goto 3)

if timeout expires: 
ssthresh = min(cwnd,rwnd)/2 
cwnd = 1
goto 2)

3) cwnd = cwnd + 1/ cwnd for each ACK  
if timeout expires: 

ssthresh = min(cwnd,rwnd)/2 
cwnd = 1
goto 2)

SLOW  START

CONGESTION
AVOIDANCE

Summary
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Summary
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slow start

congestion
avoidance
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Fast Retransmit and Fast Recovery

• Further modification to the congestion control 
algorithm proposed in 1990 (RFC 2001, 
Stevens)

• It allows the “immediate” retransmission of a 
single segment lost (Fast Retransmit)
– Single segment loss is an indication of mild 

congestion

• …and avoids to re-start the algorithm in the 
Slow Start phase when a single segment 
was lost (Fast Recovery)
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Fast Retransmit
• Observe duplicate ACKs

– If few duplicate ACKs, it may be an out of order 
segments delivery

– If more duplicate ACKs are lost, strong indication 
of segment loss

• However, since duplicate ACKs are received at the 
transmitter, other segments were received, which 
implies mild congestion

• If three duplicate ACKs are received, re-
transmit the missing segment without waiting 
for timeout expiration (Fast Retransmit) 
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Fast Retransmit: example
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Fast Recovery
• When congestion detected, go into congestion avoidance 

phase, and avoids slow start

• When the 3rd duplicate ACK is received:
– ssthresh = min(cwnd,rwnd)/2 

– re-transmit the missing segment

– cwnd=ssthresh+3
• To keep constant the number of segments in the pipe

• For each successive duplicate ACK
– cwnd=cwnd+1

– enable segment transmission also during Fast Recovery

• When an ACK confirms the missing segment:
– cwnd=ssthresh

– cwnd=cwnd+1/cwnd for each correct and in sequence ACK
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Fast Recovery: example
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Summary
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Summary

5
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slow start
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avoidance

Gain with respect 
To SS + CA
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Fast Retransmit and Fast Recovery

• At steady state, cwnd oscillates around the 
optimal window size

• TCP always forces packet drops

Time

cw
n

d

Timeout

Slow Start

Congestion Avoidance
Fast Retransmit/Recovery

ssthresh

Timeout
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TCP versions

• TCP Tahoe (Included in 4.3BSD Unix)
– Originally proposed by Van Jacobson

• Slow start

• Congestion avoidance

• Fast retransmit

• TCP Reno (Proposed in 1990) 
– All TCP Tahoe algorithms

– Adds 
• Fast-recovery

• Delayed ACKs

• Header prediction to improve performance in HW
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TCP Reno: Delayed ACK 
• Motivations to delay ACK transmission

– To reduce the number of ACKs sent (reduce control traffic)

– To exploit piggybacking to send ACKs
• The application may create data as a response to received 

segment

– To declare a larger rwnd
• The receiver may empty the reception buffer, declaring larger 

available window rwnd

• Disadvantages
– Increases connection RTT (Round Trip Time)

– Window growth is slowed down
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Delayed ACK: RFC

• The delayed ACK  algorithm (RFC 1122, 
1989) SHOULD be used by a TCP receiver. 
When used, a TCP receiver MUST NOT 
excessively delay acknowledgments. 
Specifically, an ACK  SHOULD be generated 
for at least every second full-sized segment, 
and MUST be generated within 500ms of the 
arrival of the first unacknowledged segment.

• Out-of-order data segments SHOULD be 
acknowledged immediately, to accelerate 
loss recovery. 
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Delayed ACK : algorithm

• ACKs are sent
– either every 2 received-in-sequence segments

• Window growth halved

– or 200ms after segment reception

• Immediate ACK transmission only for out-of-
sequence segments
– Send ACK for the last in sequence and correctly 

received segment 
• Generates duplicate ACKs
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TCP ACK  generation 
[RFC 1122, RFC 2581]

Event

in-order segment arrival, 
no gaps,
everything else already acked

in-order segment arrival, 
no gaps,
one delayed ACK pending

out-of-order segment arrival
higher-than-expect seq. #
gap detected

arrival of segment that 
partially or completely fills gap

TCP Receiver action

delayed ACK . Wait up to 500ms
for next segment. If no next segment,
send ACK 

immediately send single
cumulative ACK  

send duplicate ACK, indicating seq. #
of next expected byte

immediate ACK if segment starts
at lower end of gap
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TCP NewReno
• RFC2582, proposed in 1999

• Solves the TCP-Reno problem
– Multiple segment drops make useless the fast recovery-

fast retransmit mechanism

• Considers partial ACKs reception during a Fast 
Recovery as a signal of loss of another segment 
– Retransmits immediately

• A new status variable, named recovery, is needed

• When ACK received
– The Fast Recovery phase is declared ended
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TCP NewReno

• When the 3rd consecutive duplicate ACK is 
received :
– ssthresh = min(cwnd,rwnd)/2

– Recovery=highest sequence number transmitted

– Retransmit the missing segment

– cwnd=ssthresh+3

• For each successive duplicate ACK
– cwnd=cwnd+1 

– Send new segments if possible
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TCP NewReno
• When an ACK which confirms the missing segment 

is received:
– If ACK  > recovery, then

• cwnd=ssthresh

• Fast Recovery procedure ends

– Else [partial ACK]
• Shrink transmission window by an amount equal to the confirmed 

segment size

• cwnd=cwnd+1 

• Send new segments if cwnd permits
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TCP SACK 
• RFC 2018 - 1996

• Introduces selective acknowledge in ACK
– It changes the semantic and format of ACKs

• Must be negotiated by TCP transmitter and receiver
– Must understand the new format

• Exploits Option field in TCP header to transport SACK 
information
– The receiver tells the sender what it has and what it is missing

• More than one segment per RTT can be retransmitted
– The sender can then retransmit the missing segments in a single 

RTT
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TCP SACK 
• +--------+--------+
• | Kind=5 | Length |
• +--------+--------+--------+--------+
• | Left Edge of 1st Block |
• +--------+--------+--------+--------+
• | Right Edge of 1st Block | 
• +--------+--------+--------+--------+
• | |
• / . . . /
• | |
• +--------+--------+--------+--------+
• | Left Edge of nth Block |
• +--------+--------+--------+--------+
• | Right Edge of nth Block |
• +--------+--------+--------+--------+ 

• A block represents a 
contiguous sequence of 
bytes correctly received 
and buffered at the receiver

• The receiver sends SACK 
info only if some out of 
sequence segments were 
received

• May be used to indicate 
duplicated segments
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TCP variants today
• The most popular version try to address three key problems

– TCP poor performance on high bandwidth-delay product network
• How much time is needed to increase cwnd on a 1Gbps link from half 

utilization to full utilization?
– Using 1500-byte PDU and 100 ms RTT

– Full utilization cwnd = 1Gbps/1500byte ~= 8333 segments

– Half utilization cwnd = 8333/2 = 4166 segments

– cwnd is increased by 1 for each RTT

» 4167 RTTs are needed to fully utilized the link

» 4167 RTT * 100ms(RTT time) = 6.95minutes

– TCP throughput depends on RTT
• Keep a separate delay based window (Microsoft Windows solution)

– Vast majority of Internet traffic is made by short flows (e.g., HTTP)
• Most TCP flows never leave slow start!

• Increase initial cwnd to 10 (Google, RFC 6928 – 2013)
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TCP today
• Compound TCP (Windows)

– Based on Reno

– Uses two congestion windows: delay based and 
loss based

– Thus, it uses a compound congestion controller

• TCP CUBIC (Linux)
– Enhancement of BIC (Binary Increase 

Congestion Control)

– Window size controlled by cubic function

– Parameterized by the time T since the last 
dropped packet
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High Bandwidth-Delay Product
• Key Problem: TCP performs poorly when

– The capacity of the network (bandwidth) is large

– The delay (RTT) of the network is large

– Or, when bandwidth * delay is large
• b * d = maximum amount of in-flight data in the network

• a.k.a. the bandwidth-delay product

• Why does TCP perform poorly?
– Slow start and additive increase are slow to converge

– TCP is ACK clocked
• i.e. TCP can only react as quickly as ACKs are received

• Large RTT  ACKs are delayed  TCP is slow to react
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Poor Performance of TCP Reno

Bottleneck Bandwidth (Mb/s)

50 flows in both directions
Buffer = BW x Delay

RTT = 80 ms

Round Trip Delay (sec)

50 flows in both directions
Buffer = BW x Delay

BW = 155 Mb/s
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Goals
• Speed up cwnd growth

– Slow start and additive increase are too slow when 
bandwidth-delay is large

– Want to converge more quickly

• Maintain fairness with other TCP variants
– Window growth cannot be too aggressive

• Improve RTT fairness
– TCP Tahoe/Reno flows are not fair when RTTs vary 

widely

• Simple implementation
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Compound TCP Implementation
• Default TCP implementation in Windows

• Key idea: split cwnd into two separate windows
– Traditional, loss-based window

– New, delay-based window

• wnd = min(cwnd + dwnd, rwnd)
– cwnd is controlled by AIMD

– dwnd is the delay window

• Rules for adjusting dwnd:
– If RTT is increasing, decrease dwnd (dwnd >= 0)

– If RTT is decreasing, increase dwnd

– Increase/decrease are proportional to the rate of change
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Low
RTT

High
RTT

Compound TCP Example

• Advantages: fast ramp up, more fair to flows with different 
RTTs

• Disadvantage: must estimate RTT

Time

cw
n

d

Timeout

Slow Start

Timeout
Slower 
cwnd

growth

Faster 
cwnd

growth
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TCP CUBIC Implementation
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TCP CUBIC
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TCP CUBIC Example

• Less wasted bandwidth due to fast ramp up

• Stable region and slow acceleration help maintain fairness
– Fast ramp up is more aggressive than additive increase
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Timeout setting and RTT estimation

• The timeout value is essential to obtain an efficient 
ARQ mechanism

• Timeout cannot be smaller than 200ms (delayed 
ACK and transmitter clock granularity)

• The timeout should be a function of connection 
RTT, which varies over time, depending on network 
load (and queueing delay)

• A round trip time estimate is needed to set a proper 
timeout value
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Timeout setting
• For each transmitted segment, compute the time 

difference M between segment transmission and 
corresponding ACK reception
– Instantaneous RTT sample

M=t_ack-t_segment

• RTT estimate by weighting through an exponential 
filter with coefficient :
– RTT=*RTT+(1-)*M  (=0.875)

• Timeout (RTO) set to:
– RTO=  *RTT    ( >1, typically 2)
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Problems in RTT estimate

• Re-transmitted segment: RTT estimate?
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Problems in RTT estimate

• Re-transmitted segment: RTT estimate?
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Exponential backoff 
on the timeout value

• RTT samples of re-transmitted segment may 
provide a wrong estimante 

• Karn algorithm:
– RTT estimate is not modified unless an ACK for a non 

retransmitted segment is received
• Not enough! Indeed, if then RTT increase, a new RTT estimate is 

never obtained since all segment are re-transmitted

– Increase timeout value according to an exponential 
backoff algorithm for each lost segment, since the RTT 
estimate is not reliable 

• Sooner or later the timeout will assume a value larger than the 
current RTT; and a new RTT estimate is obtained
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Problems in RTT estimate

• Delay variations may create fluctuations on 
RTT estimate
– Use more complex formulas to estimate RTT

– Take into account the average estimation error 
(RFC6298 – 2011, RFC2988 – 2000)

• timeout=average+4*standard_deviation
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Jacobson/Karels Algorithm

• New proposal for RTT estimation
– Diff = SampleRTT - EstimatedRTT 

– EstimatedRTT = EstimatedRTT + ( Diff) 

– Deviation = Deviation + (|Diff|- Deviation)

– Where  ranges from 0 to 1

• Standard deviation is considered when 
computing RTO
– RTO =  EstimatedRTT +  Deviation

where  = 1 and  = 4
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Notes on RTT estimate
• Estimate is always constrained by timer 

granularity (10ms on recent systems, 200ms 
on older systems)
– The RTT may be comparable with timer 

granularity (RTT=100-200ms for long distance 
connections)

• Accuracy in RTT estimation is fundamental 
to obtain an efficient congestion control 
(avoids useless re-transmissions or 
excessively long waits)
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Timeout setting: problems
• Initial value? 

• Since an RTT estimation is missing, the 
initial timeout value is chosen according to a 
conservative approach
– Initial timeout set to 1s (RFC6298)

• TCP connections are very sensible to the 
first segment loss since the timeout value is 
large
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Silly Window Syndrome
• Excessive overhead problem due to

– Slow receivers or

– Transmitter sending only small segments

• If the receiver buffer fills up, the receiver 
declares increasingly smaller rwnd

• The transmitter sends tinygrams if the 
applications generates few data (e.g., telnet 
application)
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TCP connections for telnet traffic

• Telnet application
– When pressing a key on the terminal keyboard

– A TCP segment TCP of 1B is sent in a dedicated 
IP datagram: (20B+20B)header +1B data

• Even worse, if local echo disabled, 4 1B 
segments are sent: key + ACK  + echo + 
ACK 

• Exploiting piggybacking of the first ACK on 
the echo segment, one segment is saved
– Delayed ACK helps
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Silly Window Syndrome avoidance

• At the receiver side:
– Declare the new available receiver window only 

if equal to 
• 1 MSS or

• Half of the receiver buffer

– Delayed acknowledgment

• At transmitter side:
– Nagle algorithm
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Nagle algorithm (RFC 896)

• When opening the connection, all data in the 
transmission buffer are sent

• Then, wait for
– at least 1 MSS data in the transmission buffer or

– ACK reception

• A host never has more than one tinygram 
without an ACK

Computer Networks Design and Management - 82TNG group - Politecnico di Torino

Nagle algorithm

• When running a telnet application, successive 
characters following the first one are collected in a 
single segment, sent after receiving the first ACK

• Ftp, smtp, http connections are not penalized 
• The number of tinygrams is drastically reduced
• Is congestion friendly

– Being ACK clocked, when the network is lightly loaded ACKs 
are frequently and fastly received and segment transmission 
is speeded-up 

– When network becomes congested, ACKs are delayed and 
less segments are sent


