

Towards a Digital Society

Data tsunami

Source: Cisco VNI, 2017

tsunami

Source: Cisco VNI, 2017

Data tsunami

Internet traffic triples in just 5 years!

Source: Cisco VNI, 2017

Connected devices

Source: Statista, www.statista.com

Internet of Things

- connected machines
- robots
- digitalized systems
- sensors

•

Connected devices

Factor 5 in 10 years!

Internet of Things

- connected machines
- robots
- digitalized systems
- sensors

•

Source: Statista, www.statista.com

Data centers

- Can have up to 50-100,000 servers
- In US alone, the data centers consume 90 billion kWh a year, more than 30 giant power plants (500+ MW)
- 3% of total US electricity

Access networks

It is estimated that

- cellular systems: there are 7 millions of sites (several BSs each) worldwide
- WiFi: 340 million WiFi hotspots (1 every 20 people)

ICT as a primary need

Source: "World Development Report 2016: Digital Dividends," The World Bank Group, 2016

Computing power: Moore's law

No. transistors per chip doubles every 18 months

What are these digital systems? Which benefits are possible?

Digital systems today

Pervasive presence of Artificial Intelligence (AI)

What is AI?

systems that think rationally (like humans)
systems that act rationally (like humans)

They are coded to learn according to rules, based on

some concept of utility that has to be maximized
past history (data)

Benefits

Al and digital systems can

- Substitute humans in automatic tasks
- Control physical-world equipment
- Make consequential decisions, support decision process

Al is about computing power, algorithms and data

 Possible today due to computational power and storage capacity

Benefits along different dimensions...

Micro-scale: Services and products tailored and customized for individuals' needs

Macro-scale: Evolution of services and products to dynamically adapt to evolving scenarios

- → climate change¹
- → urban transformation
- society composition, given ageing and migration flows

Examples of benefits

Self-driving cars will save about half of the lives that are usually lost in car accidents, which totals around 30,000 in the US alone

Physical assistance for elderly people

 \rightarrow About 15% of people in the US and 26% in Japan are older than 65

Healthcare diagnostics and targeted treatments

Optimized transportation and routing

Estimated to reduce 25% energy consumption and pollution

Examples of benefits

Google translate service (already available for more than 90 languages) → 20% of Google queries are done by voice with natural language processing

Personalized education

Robotics

Face recognition capability of any of our cameras

Benefits to development

IoT can contribute to Sustainable Development Goals

- Climate change: climate monitoring, energy management systems
- Disaster management: monitoring of extreme weather
- Agriculture: precision agriculture, management of water, drones
- Megacities: transportation, electric grids, water management

Needs to be well integrated in policies and government strategies

Risks?

Risks to widen gaps

Intra-society gaps

- Digital educated / non educated people
- With or without access
- Among generations

Inter-society gaps:

- → Rich and poor countries
- Dominant positions in the markets aggregate few very large groups that can afford huge investments that reinforce their already dominant position
- Dynamic/static society that can keep the pace and lead the transformations

Risks of slowing down cultural growth

Automatic decision making, recommendation systems, are built based on current "normal" or "popular" behaviors, including → prejudice, racism, sexism, ...

- Diversity, minority instances, niche cultures and interests risk to be marginalized
- Social inclusion of multiple cultures might be slowed down
- Cultural (and economical) dominant positions are strengthened

Controlling the risks

To transform opportunities into benefits, we need to understand and control risks

Elaborate and disseminate new ethical concepts and culture about

- Development and design of AI products (for technicians and engineers)
- → Usage of AI (for all)

Technicians and engineers

Need a deep understanding of

Technical risks and their implications, including sociological, cultural and economical implications

A new awareness of the cultural influence that the developers have on the machine behavior

- Their coding reflects what they are, including believes, attitudes and cultural influence
- Machine "objective functions" hide technicians' understanding of final targets of decision processes

Community of users

Awareness of risks and their implications, as well as benefits and potentialities, from the community of users leads to

- users engagement for pervasive system monitoring and control
- reduction of impacts and risk management
- identification of commonly agreed ethical R&D guidelines

Creation of an international community that involves all stakeholders:

- \rightarrow citizens and users
- → policy makers

Policy makers

Development of control mechanisms and benchmarking for digital systems

Guidelines and rules for an ethical design

Steps

- Define a path toward increasing technical expertise in technologies at all levels of government
- Promote research on the fairness, security, privacy, and social impacts of AI systems
- Increase public and private funding for interdisciplinary studies of the societal impacts of AI

The labour market changes, new needs in education

Labour market

Robots and computers in addition to routine physical work activities can accomplish tasks that include cognitive capabilities

- **opportunities:** labor cost reductions and performance benefits
- challenges: the nature of work will change

Technical automation potential % 100 <5% of occupations consist of activities that are 100% automatable 90 80 70 60 50 About 60% of occupations have at least 30% of their 40 activities that are automatable 30 20 10 0 10 20 30 40 50 60 70 80 90 100 0 Share of roles 100% = 820 roles

Source: "A future that works: Automation, employment and productivity", January 2017, McKinsey Global Institute

Education

Need for more people that are skilled and trained in STEM disciplines (Science, Technology, Engineering, Mathematics)

Source: Eurostat.

Need for more investments in high education and a more pervasive scientific and technical culture

Source: Eurostat.

"Niente nella vita va temuto, dev'essere solamente compreso. Ora è tempo di comprendere di più, così possiamo temere di meno."

