QoS in Frame Relay

Andrea Bianco
Telecommunication Network Group
firstname.lastname@polito.it
http://www.telematica.polito.it/

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 1

Frame Relay: characteristics

- Packet switching with virtual circuit service
 - Label named DLCI: Data Link Connection Identifier
 - Virtual circuits are bi-directional
- "Connection" is associated with the virtual circuit
- No error control (DL-control is not used even at the edge)
- No flow control
- LAP-F protocol
- · Packet size:
 - variable up to 4096byte
- Mainly thought for data traffic

Andrea Bianco – TNG group - Politecnico di Torino

LAPF packet

 ADDRESS field contains the DLCI (Data Link Connection Identifier) and some additional bits

DL-CORE

DL-CONTROL

FLAG
ADDR (MSB)
ADDR (LSB)
control

Information

CRC (MSB)
CRC (LSB)
FLAG

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 3

ADDRESS field

 DLCI: Data Link Connection Identifier

 FECN/BECN: forward/backward explicit congestion notification

- · DE: discard eligibility
- C/R: command/response
- D/C: DLCI or DL-CORE
- · EA: extension bit

upper DLCI				EA 0
lower DLCI	FECN	BECN	DE	EA 1

upper DLCI			C/R	EA 0
DLCI	FECN	BECN	DE	EA 0
lower DLCI or DL-CORE control				EA 1

upper DLCI			C/R	EA 0
DLCI	FECN	BECN	DE	EA 0
DLCI				EA o
lower DLCI or DL-CORE control			D/C	EA 1

Default format (2 byte)

3 byte format

4 byte format

Andrea Bianco – TNG group - Politecnico di Torino

Frame Relay: user-network interface

- Negotiable parameters, a-priori, on a contract basis:
 - CIR (Committed Information Rate) [bit/s]
 - CBS (Committed Burst Size) [bit]
 - EBS (Excess Burst Size) [bit]
- CIR: guaranteed bit rate (throughput)
- CBS: amount of data the network is willing to accept over a measurement period T
- EBS: amount of excess data the network may transfer over T.
 Packets are marked with the DE bit set to 1
- Data exceeding CBS+EBS are directly discarded at network access

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 5

Frame Relay: definition of the measurement interval T

CIR	CBS	EBS	Т
> 0	> 0	> 0	CBS/CIR
> 0	> 0	= 0	CBS/CIR
= 0	= 0	> 0	EBS/Access Rate

Andrea Bianco – TNG group - Politecnico di Torino

- $\bullet \quad \Sigma_{\mathsf{A}}\mathsf{CIR}_{\mathsf{A},\mathsf{J}} \leq \mathsf{ACCESS}_\mathsf{RATE}_{\mathsf{A}}$
 - where A,J refers to the VC from node A to node

Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 7

Frame Relay: resource allocation

- $\bullet \quad \Sigma_{\mathsf{A}}\mathsf{CIR}_{\mathsf{A},\mathsf{J}} \leq \mathsf{ACCESS}_\mathsf{RATE}_{\mathsf{A}}$
 - where A,J refers to the VC from A to J

Andrea Bianco – TNG group - Politecnico di Torino

• $\Sigma_{A}CIR_{A,J} \leq ACCESS_RATE_{A}$ – where A,J refers to the VC from A to J

Andrea Bianco – TNG group - Politecnico di Torino

Computer Networks Design and Management - 9

Frame Relay: resource allocation

- $\bullet \ \Sigma_{\mathsf{A}} \mathsf{CIR}_{\mathsf{A},\mathsf{J}} \leq \mathsf{ACCESS_RATE}_{\mathsf{A}} \\$
 - where A,J refers to the VC from A to J

Andrea Bianco – TNG group - Politecnico di Torino

• $\Sigma_{A}CIR_{A,J} \leq ACCESS_RATE_{A}$ – where A,J refers to the VC from A to J

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 11

Frame Relay: resource allocation

- $\bullet \ \Sigma_{\text{LINK}} \text{CIR}_{\text{i,j}} \leq \text{LINK_SPEED} \ \ \forall \ \ \text{links}$
 - where i,j refers to the VC from i to j

Andrea Bianco – TNG group - Politecnico di Torino

- $\bullet \ \Sigma_{\text{LINK}} \text{CIR}_{i,j} \leq \text{LINK_SPEED} \quad \forall \ \text{links}$
 - where i,j refers to the VC from i to j

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 13

Frame Relay: resource allocation

- $\bullet \ \Sigma_{\text{LINK}} \text{CIR}_{i,j} \leq \text{LINK_SPEED} \quad \forall \ \text{links}$
 - where i,j refers to the VC from i to j

Andrea Bianco – TNG group - Politecnico di Torino

- $\bullet \ \Sigma_{\text{LINK}} \text{CIR}_{i,j} \leq \text{LINK_SPEED} \ \ \forall \ \ \text{links}$
 - where i,j refers to the VC from i to j

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 15

Frame Relay: algorithms

- Policing, or conformance verification
 - Leaky Bucket
 - Token Bucket
- Congestion control
 - backward
 - forward

Andrea Bianco – TNG group - Politecnico di Torino

Conformance verification

- Basic idea
 - If a packet reaches the network access and it is conformant to the CBS constraint over T, it is transmitted at high priority with DE=0
 - If a packet reaches the network access and it is not conformant to CBS over T but it is conformant to CBS+EBS over T, it is transmitted at low priority with DE=1
 - If a packet reaches the network access and it is not conformant to CBS+EBS over T, it is discarded
- Same algorithms can be used to do shaping
 - Traffic adaptation to make it conformant
 - Delay instead of marking/dropping

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 17

Leaky Bucket

- · As a traffic regulator
 - User traffic entering the buffer is transmitted at a maximum CBR rate equal to ρ
 - User traffic exceeding the buffer size B is dropped
 - Any source becomes a CBR source at rate ρ
 - · If packet size is fixed
- When using to do conformance verification, if a packet arrives earlier than it should, with respect to ρ, drop it

Andrea Bianco – TNG group - Politecnico di Torino

Leaky Bucket

- Buffer size B is not a critical parameter
 - we can assume infinite buffer size
- Amount of data sent over a period T is ≤Tρ
- Dimensioning of parameter ρ for VBR traffic with peak B_P and average B_M
 - $-\,\rho\cong B_M$: too much traffic could be discarded
 - $\rho \cong B_P$: waste of link bit rate, largely underutilized
- Traffic regulator which does not admit any burstiness

Andrea Bianco - TNG group - Politecnico di Torino

Token Bucket

- Tokens are generated at a fixed rate ρ
- A maximum number of β tokens can be stored in the token buffer
 - Permits some burstiness
- User data are sent over the network only if there is a token available in the token buffer
- Maximum amount of data send over a period T is $\leq T_{\rho} + \beta$
- · The source becomes a VBR source with
 - B_M ≈ ρ
 - B_P = access rate
 - Burst duration $\approx \beta$
- Access to the network can be further regulated with a cascading leaky bucket to limit B_P

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 21

Token Bucket+ Leaky Bucket

• Regulates average rate ρ_2 , peak rate ρ_1 , burst duration β

Measurement problems

- Measuring a rate of an asynchronous packet flow may be complex
- Simple solution:
 - Measure over fixed length intervals

– When does the interval starts? Border effect between adjacent intervals?

Andrea Bianco – TNG group - Politecnico di Torino

Measurements problems

- Better solution is a temporal sliding window of T seconds
 - When a packet arrives, the rate is measured accounting for the amount of byte received during the last T seconds
 - Difficult to implement (necessary to remember packet arrival times)
- It is possible to exploit a fluid approximation
 - New rate R estimate at each packet arrival
 - At packet arrival, we assume that the flow has transmitted R*T byte in the last T seconds and the estimate of R is updated

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 27

Congestion

- Informally
 - too many sources sending too much data, too fast for network to handle
- More formally
 - Average input rate larger than average output rate
- Congestion signal
 - long delays (queueing in router buffers)
 - lost packets (buffer overflow at routers)
- Effect
 - Retransmissions (sometimes un-needed)
 - Reduced throughput

Andrea Bianco – TNG group - Politecnico di Torino

Effect of congestion

- Multihop paths
- As red traffic increases, all arriving blue pkts at upper queue are dropped
- When packet dropped, any "upstream transmission capacity used for that packet was wasted!

Solutions?

- Increase the buffer size
 - Buffers helps in solving
 - · Contentions
 - · Short term congestion only
 - For permanent overload, the excess traffic is lost, regardless of the buffer size
- Increase the link speed
 - We may even create worse congestion
- · Increase processing speed
 - We will transfer more packets, possibly exacerbating the congestion
- Congestion is created by an excess of traffic
 - To solve it, we need to reduce the input traffic

Andrea Bianco – TNG group - Politecnico di Torino

Approaches to congestion control

- · Drop based
 - Network nodes only drop packets when needed
 - Relies on end-to-end (transport) protocols to solve the congestion
- Credit based
 - Network nodes provide credits to upstream nodes
 - Backpressure
- Signalling based (to users)
 - Network nodes detect congestion and signal to users
 - · Via a single or few bit (forward/backward)
 - · Via explicit rate computation
- In all cases, rely on cooperation

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 31

Features of the approaches

- Drop
 - Easy
 - No need to be flow aware
- Credit
 - Very complex
 - Need to be flow aware to avoid blocking a link
- Signalling
 - Can trade complexity vs effectiveness
 - Can be either flow unaware or flow aware

Andrea Bianco – TNG group - Politecnico di Torino

Frame Relay: congestion

- Summation of CIR over all virtual circuits on each link may exceed the available bit rate over a link (overbooking)
 - Creates congestion, potentially a long-term congestion
- Traffic burstiness may create congestion (typically short term congestion)
- Need to control congestion?
 - X.25 (ISDN) may exploit link-by-link (hop-by-hop) flow control (and internal switch backpressure) to control (un-fairly) congestion
 - In Internet the congestion control is delegated to hosts running TCP, the network simply drops packets
 - Frame relay, which does not implement flow control, uses explicit signaling from network nodes to signal congestion to users through FECN and BECN bits

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 33

Congestion control in Frame Relay

- Flow control is not supported in Frame Relay
- The network is unprotected against congestion
 - Only protection mechanism is packet discarding
- Congestion should not occur if sources are sending at CIR!
- When a switch (network node) establishes that congestion has occurred, to signal congestion it sets one among two bits:
 - FECN (Forward technique)
 - BECN (Backward technique)

Andrea Bianco - TNG group - Politecnico di Torino

Congestion control: goals

- Avoid packet loss
- · Constraints?
 - Maximum network utilization
 - Fairness
 - Often in contrast
- Simple case: all flows are alike
 - Fairness means to provide the same set of resources to all flows
 - Over a single bottleneck the problem is trivial
 - Network wide problem

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 35

Congestion control: an example

- · Maximize the bit rate received by each flow
 - Flow 1: 5 Mb/s
 - Flow 2: 5 Mb/s
 - Flow 3: 40 Mb/s
- Maximize the overall network utilization
 - Flow 1: 10 Mb/s
 - Flow 2: 0 Mb/s
 - Flow 3: 45 Mb/s

Andrea Bianco – TNG group - Politecnico di Torino

Max-min fairness

- · One possible definition of fairness
- · A bit rate allocation is defined as max-min if
 - It maximizes the bit rate allocation to flows who receive the minimum allocation
- · Property:
 - A max-min allocation is such that, to increase the bit rate allocated to a flow, it is necessary to decrease the bit rate allocated to another flow which is already a smaller or equal bit rate
 - In other words, no bit rate increase can be obtained without penalizing flows already receiving a smaller allocation
- A max-min allocation cannot be obtained with local assignments
 - A global network view is needed

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 37

Max-min fairness: algorithm

- · Given: topology, link capacity, flows and flow routing
- 1) The algorithm starts with a 0 allocation to all flows, each flow is marked as unsatisfied
- 2) The allocation of all unsatisfied flows is increased by the same, small, quantity, until a bottleneck link is saturated
- 3) All bottlenecked flows are saturated, thus, cannot receive a larger allocation
 - Bottlenecked flows are marked as satisfied
- 4) Goto 2, until all flows are bottlenecked and satisfied
- Must re-run for any topology or flow modification

Andrea Bianco – TNG group - Politecnico di Torino

Max-min fairness: example

 Problem: find a fair bandwidth allocation to flows (Fi: Si->Di), according to the max-min paradigm

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 39

Max-min fairness: example

- Order in which links are saturated
 - L1, L4, L3, L2
- Solution: fair max-min allocation
 - F1: 45.25 Mbps
 - F2: 20.75 Mbps
 - F3: 17 Mbps
 - F4: 17 Mbps
 - F5: 37.75 Mbps
 - F6: 20.75 Mbps
 - F7: 20.75 Mbps
 - F8: 20.75 Mbps

Andrea Bianco – TNG group - Politecnico di Torino

Forward congestion

- When a switch detects congestion, it sets the FECN bit to 1 on all arriving packets sharing the congested buffer
 - Congestion signaled to all congested VCs
- When the congestion indication reaches the receiver, it is redirected to the transmitter on a data flow traveling in the opposite direction
- The transmitter reduces the transmission speed according to a standardized algorithm
- · Properties:
 - Relatively slow
 - Simple to implement
 - No additional traffic is created, if there is a data flow from receiver to transmitter (normally at least ACKs are sent)
- «Automatically» signaling only to active DLCIs
 Andrea Bianco TNG group Politecnico di Torino
 Computer Networks Design and Management 41

Backward congestion

- When a switch detects congestion, it sets the BECN bit to 1 on all packets belonging to congested VCs
 - These packets are not stored in the congested buffer!
 - Ad-hoc signaling packets may be generated by the switch if no data traffic is flowing in the opposite direction
- The transmitter reduces the transmission speed according to a standardized algorithm when it detects packets with BECN=1
- Properties:
 - Relatively fast
 - Complex: need to store a list of congested (active?) DLCI on the forward path and to wait (or to create after a timeout) packets with the proper DLCI on the backward path

Andrea Bianco – TNG group - Politecnico di Torino

Source behaviour: FECN

- The FECN technique is based on the idea that congestion phenomena are relatively slow
- Transmitter
 - Start transmitting at a speed equal to CIR
 - Computes the percentage of LAP-F frames received with a FECN bit set to 1 (FECN₁) over a pre-determined time interval
 - If FECN₁ is >50%, the emission rate is reduced
 - If FECN₁ is <50%, the emission rate is incremented

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 43

Source behaviour: FECN

- Measuring interval δ=2RTT
- Rate based transmitter:
 - R_{INITIAL} = CIR
 - if FECN₁> FECN₀
 - R_{New}=0.875R_{Old}
 - if FECN₁< FECN₀
 - R_{New}=1.0625R_{Old}
 - If not transmitting for T, restart from R_{INITIAL}
- Window based transmitter:
 - $-W_{INITIAL} = 1$
 - if FECN₁> FECN₀
 - W_{New}=0.875W_{Old}
 - if FECN₁< FECN₀</p>
 - W_{New} = W_{Old} +1

Andrea Bianco – TNG group - Politecnico di Torino

Source behaviour: BECN

- The BECN technique is based on the idea that congestion phenomena are fast
 - Instantaneous reaction (not based on δ =2RTT)
- R_{INITIAL} = CIR
- If a single frame with BECN=1 is received:
 - $-R_{N}=1/8R_{O}$
- If a single frame with BECN=0 is received:
 - Increase rate

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 45

Congestion control: issues

- · Fairness among flows
 - More active flows receive more congestion signals
 - May be ok, since are creating more congestion, but is it max-min fair?
 - Temporarily inactive flows?
- Signaling frequency
 - Any reaction to congestion signals is constrained by the flow RTT
 - It would make sense to adapt the (congestion) signaling frequency to flow RTT
 - Practically impossible to know flow RTT in network nodes (may be done at the tx/rx side)
 - Connections with shorter RTTs react faster
 - · Both when increasing and decreasing rate
- When congestion is detected (set up congestion bit in the header)
 - Operate on packet reaching the buffer or leaving the buffer?

Andrea Bianco - TNG group - Politecnico di Torino

Congestion control: issues

- How to detect congestion?
 - Measure ingress flow speed in each buffer
 - · Over which time interval?
 - · Worth complexity given the binary feedback available?
 - Always balance complexity, performance, signaling capability
 - · Operates on a flow basis or on traffic aggregate?
 - Threshold on buffer occupancy
 - · Instantaneous buffer occupancy
 - Fast, but unstable
 - Typically exploits some hysteresis to avoid switching between congested/noncongested state
 - · Average occupancy over a time-sliding measurement window
 - How the window size should be determined?
 - More stable, but slower in reaction
 - · Occupancy derivative
 - More precise than occupancy alone
 - » Buffer occupancy of 100 packets should be treated differently if the "previous" buffer occupancy was 150 or 50 packets
 - Need to define time interval over which evaluate the derivative
 - Threshold value?
 - Close to zero occupancy to exploit most of the buffer size
 - Enough space below threshold to allow for synchronous arrivals and avoid unneeded congestion signals

Andrea Bianco - TNG group - Politecnico di Torino

Computer Networks Design and Management - 47

Congestion control: issues

- · Buffer sizing?
 - Buffer above threshold should increase proportionally to
 - · Number of connections involved in congestion
 - Connection RTTs
 - · Need to buffer in-flight packets
 - Connection rate
- Always pay attention to
 - The scenario in which algorithms are compared
 - · Network topology (often single bottleneck node examined)
 - · Number of flows
 - · Flow behavior
 - Difficulty in properly setting parameters
 - · If choosing wrong values what happens?
 - · How difficult is to set up proper values?
 - · Algorithm robustness to parameter setting
- Algorithm complexity w.r.t. performance gain
- All parameters (threshold, measurement window, buffer size) could be set off-line or modified at run time
 - Run time modification is worth the effort?

Andrea Bianco – TNG group - Politecnico di Torino