
POLITECNICO DI TORINO

Exercises on
Switching Architectures,

Data Centers
and

Fast Packet Processing
Class of Switching Technologies for Data Centers

Academic year 2021/22

Paolo Giaccone

Version: September 28, 2021
©2020-21

Contents

1 Interconnection networks 2
1.1 Clos networks . 2

1.1.1 Recursive construction . 13
1.1.2 Non-interruptible networks . 21

1.2 Benes networks . 24
1.3 Banyan networks . 31
1.4 Cantor networks . 34
1.5 Comparison among networks . 36
1.6 Lee method . 38
1.7 Space-time switching . 46

2 Data centers 48
2.1 Cloud computing . 48
2.2 Design of data center networks . 49

3 Packet switches 60
3.1 Theoretical performance . 60

3.1.1 Bufferless switches . 60
3.1.2 Input queued switch with single FIFO . 64
3.1.3 Generic switches with input and/or output queueing 67

3.2 Packet Scheduling in Input Queued Switches . 69
3.2.1 Scheduling algorithms for unicast traffic 69
3.2.2 Scheduling algorithms for variable size packets 77
3.2.3 Scheduling algorithms for QoS support 79
3.2.4 Scheduling algorithms for multicast traffic 85

4 Fast packet classification and SDN 93
4.1 Lookup tables for packet forwarding . 93
4.2 Software Defined Networking . 97

5 Probabilistic data structures 101
5.1 Hash tables and fingerprinting . 101
5.2 Bloom filters . 109
5.3 Cuckoo filters . 113

1

Chapter 1

Interconnection networks

1.1 Clos networks
Exercise 1
Design a Clos network, strictly non blocking, of size 100×100, using modules 10×10. Compute
the final complexity in function of the complexity C(10) of the 10× 10 module.

Solution:
N = 100

p = 10 =
√
N ⇒ q = 10

l = 2p− 1 = 19

The resulting network is shown in figure 1.1.
To build a 10 × 19 module, it is possible to use two modules 10 × 10 in parallel, of which

the first 19 outputs are connected to the following 19 modules of the second stage, as shown
in figure 1.2. The last output of the second 10 × 10 module in parallel will be idle, but it will be
included in the computation of the total complexity of the network.

CSNB(100) = 10× 2C(10) + 19C(10) + 10× 2C(10) = 59C(10)

FFF

Exercise 2
Design a Clos network, strictly non blocking, 1000×1000, using only 10×10 modules. Compute
the final complexity in function of C(10).

Solution:
N = 1000

}

}10 101

}

}10 1 19

.

.

.

10

.

.

.

1019

.

.

.

}

}119 10

Figure 1.1: Strictly non blocking Clos network 100× 100

2

}

}10 19

10

1

19

11

.
.
.

.
.

.

Figure 1.2: Architecture of a 10× 19 module

}

}10 1 19

19

.

.

.

}

}119 10

.

.

.

}

}1

.

.

.

100

100 100

100

Figure 1.3: Strictly non blocking Clos network 1000× 1000

p = 10

q =
N

p
= 100

l = 2p− 1 = 19

The resulting network is shown in figure 1.3.

CSNB(1000) = 100× 2C(10) + 19CSNB(100) + 100× 2C(10)

CSNB(1000) = 400C(10) + 19(59C(10)) = (400 + 1121)C(10) = 1521C(10)

FFF

Exercise 3
Design a Clos network, rearrangeable, 100 × 100, using modules 10 × 10. Compute the final
complexity in function of C(10).

Solution:
N = 100

p = 10

q =
N

p
= 10

l = p = 10

The resulting network is shown in figure 1.4.

CREARR(100) = 30C(10)

3

}

}10 101

.

.

.

10
.

.

.

10 10

.

.

.

}

}110 10

}

}10 1 10

Figure 1.4: Rearrangeable Clos network 100× 100

10

.

.

.

}

}110 10

.

.

.

}

}1

.

.

.

100

100 100

100

}

10 1 10}

Figure 1.5: Rearrangeable Clos network 1000× 1000

FFF

Exercise 4
Design a Clos network, rearrangeable, 1000× 1000, using modules 10× 10. Compute the final
complexity in function of C(10).

Solution: Rearrangeable (REARR) Clos network, total inputs and outputs N = 1000, 10 × 10
modules.

p = 10

q =
N

p
= 100

l = p = 10

The resulting network is shown in figure 1.5.

CREARR(1000) = 200C(10) + 10CREARR(100) = (200 + (10× 30))C(10) = 500C(10)

FFF

Exercise 5
Consider a Clos network, rearrangeable 9× 9, with p = 3, and the following Paull matrix: − b −

− a, c b
c − a


being the modules of the second stage a, b e c.

1. Draw the active connections in the network and write a possible set of input/output con-
nections, satisfying the Paull matrix.

4

1

2

3 3

2

1

c

b

a

Figure 1.6: Active connections according to the initial Paull matrix

INPUT OUTPUT

1 4
4 7
5 5
6 6
8 3
9 8

2. Connect module 1 of the first stage with module 1 of the third stage. Recompute the Paull
matrix and draw the corresponding connections. Should the network be reconfigured? Is
the solution unique?

3. Connect again module 1 of the first stage with module 1 of the third stage. Recom-
pute the Paull matrix and draw the corresponding connections. Should the network be
reconfigured? Is the solution unique?

Solution:

1. Figure 1.6 shows the network with the active connections of the initial Paull matrix. A
possible set of input/output connections is the following:

2. No, there exists an unique solution and the network is not reconfigured. The Paull matrix
becomes:  a b −

− a, c b
c − a


The final network is shown in figure 1.7.

3. Yes, in this case the network is reconfigured and there exist two possible solutions. The
first corresponds to P1 Paull matrix:

P1 =

 a, c b −
− a, c b
b − a


The final network is shown in figure 1.8. The second solution corresponds to P2 Paull

5

1

2

3 3

2

1

c

b

a

Figure 1.7: Active connections according to the new Paull matrix

1

2

3 3

2

1

c

b

a

Figure 1.8: Network corresponding to P1

1

2

3 3

2

1

c

b

a

Figure 1.9: Network corresponding to P2

matrix:

P2 =

 a, b c −
− a, b c
c − a


The final network is shown in figure 1.9.

FFF

6

Exercise 6
Consider a rearrangeable 9× 9 Clos network, with three modules at the first and third stages,
and the following Paull matrix:  − − a

− b c
b a, c −


being the modules of the second stage a, b and c.

1. Draw the whole network with all the interconnection links.

2. Draw the active connections in the network and write a possible set of input/output con-
nections, satisfying the Paull matrix.

3. Connect module 1 of the first stage with module 1 of the third stage. Recompute the Paull
matrix and draw the corresponding connections. Should the network be reconfigured? Is
the solution unique?

4. Connect again module 1 of the first stage with module 1 of the third stage. Recom-
pute the Paull matrix and draw the corresponding connections. Should the network be
reconfigured? Is the solution unique?

5. In such Clos network, independently from the specific Paull matrix above:

• what is the minimum and the maximum number of second-stage modules that can
be involved in any rearrangement?

• what is the minimum and the maximum number of pre-existing connections that
could be rearranged?

Solution:
This exercise is almost identical to Ex. 5. Regarding the last two questions, the number of

second-stage modules that are involved in any rearrangment is always 2. Thus, the number of
pre-existing connections that could be rearranged is between 1 and 4.

FFF

Exercise 7
Design a Clos network, rearrangeable, 24 × 25 with n = 6 and m = 5, where n is the number
of inputs of the first stage modules and m is the number of outputs of the third stage modules.
Consider the following Paull matrix:

− − a b, e c
a, b d − c −
− c e, f − d
d − c a b, f


being a, b, c, d, e and f the modules of the second stage.

1. Draw the active connections in the network.

2. Connect module 1 of the first stage with module 1 of the third stage. Recompute the Paull
matrix and draw the corresponding connections. Should the network be reconfigured? Is
the solution unique?

3. Connect again module 1 of the first stage with module 1 of the third stage. Recom-
pute the Paull matrix and draw the corresponding connections. Should the network be
reconfigured? Is the solution unique?

7

4x5

f

4x5

e

4x5

c

6x5

1

6x5

2

6x5

3

6x5

4

6x5

5

6x6

1

6x6

4

6x6

2

6x6

3

4x5

b

4x5

d

a

4x5

Figure 1.10: Rearrangeable Clos network 24× 25

Solution: The number of necessary modules is r1 = 4 and r3 = 5, respectively for the first and
third stage.

1. Figure 1.10 shows the network with the active connections corresponding to the initial
Paull matrix.

2. No, there exists just one solution for which the network should not be reconfigured. Paul
matrix becomes: 

f − a b, e c
a, b d − c −
− c e, f − d
d − c a b, f


where it was sufficient to add a link through f to connect the first module of the first stage
to the third stage.

3. Yes, in this case the network should be reconfigured. There exist two equivalent solu-
tions: indeed from figure 1.10 it is possible to observe that the required connection can
be realized through two different modules (c and d) of the central stage. By rearranging
the network and choosing to route the connection through c, the following Paull matrix is
obtained:

P1 =


c, f − a b, e d
a, b c − d −
− d e, f − c
d − c a b, f


By choosing instead to route the connection through d, the following Paull matrix is ob-
tained:

P2 =


d, f − a b, e c
a, b d − c −
− c e, f − d
c − d a b, f


FFF

8

Exercise 8
Compare the complexity of two symmetric Clos networks, the first one that is strictly non block-
ing and the second one that is rearrangeable. Let N be the number of total ports and p be the
number of inputs for the first stage.

1. Compute the complexity in terms of contact points.

2. In the case of the rearrangeable network, compute the value of p minimizing the com-
plexity; what is the final complexity?

3. Draw both Clos networks in the cases: p = 1 and p = N .

Solution: By setting q = N/p in the formulas of the Clos networks complexity:

CSNB = (2p− 1)(2N +N2/p2) CREARR = 2pN +N2/p

Consider now the rearrangeable Clos network. The minimum of CREARR is obtained for p̂
that can be computed by setting:

∂CREARR

∂p
= 2N − N2

p2
= 0 ⇒ p̂ =

√
N

2

Hence, the minimum complexity is:

CoptREARR = 2
√

2N
√
N

In the case p = 1, the Clos network degenerates into a crossbar N × N ; for p = N , the
Clos network degenerates into two tandem crossbars. Hence, the complexity for p = 1 is equal
to N2 whereas for p = N it is equal to 2N2. Note that the optimal complexity is lower in both
cases.

FFF

Exercise 9
Design a rearrangeable switch of size 900 × 450 using only modules of size 10 × 10, with the
aim of minimizing the number of modules.

1. Describe the architecture

2. Compute the total number of modules required

3. Describe the configuration algorithm

4. Write the formula to compute the minimum theoretical number of modules to build the
switch and to compare the actual complexity to the optimal one (question out of scope
for the program 2021/22)

Solution: The 900× 450 switch can be built using a Clos network in the following way:

C900×450 = 90C10 + 10C90×45 + 45C10

where the 90× 45 switch can be also built using a Clos network:

C90×45 = 9C10 + 10C9×5 + 5C10

in which the last module of the last stage has 5 unconnected outputs. Now observe that a 9×5
switch can be built with a 10× 10 module; hence

C90×45 = 24C10

9

and finally
C900×450 = 375C10

Paul’s algorithm is used to configure the network, and should be applied recursively twice.
The total number of configurations X is

X =
900!

450!

thus the minimum number of modules is

Ĉ = log10!X =
log2(900!)− log2(450!)

log2(10!)

Now it is possible to exploit Stirling approximation:

log2 n! ∼ x log2 n− 1.44n+ 0.5 log2 n+ 1.32

and numerically obtain
Ĉ = 194

which is almost half than the actual number of modules adopted for the design.

FFF

Exercise 10
Design a rearrangeable switch of size 600 × 800 using only modules of size 10 × 10, with the
aim of minimizing the number of modules.

1. Describe the architecture.

2. Compute the total number of required modules.

3. Describe the configuration algorithm.

4. Write the formula to compute the minimum theoretical number of modules to build the
switch and to compare the actual complexity to the optimal one. (question out of scope
for the program 2021/22)

FFF

Exercise 11
Design a rearrangeable switch of size 400 × 800 using only modules of size 10 × 10, with the
aim of minimizing the number of modules.

1. Describe the architecture.

2. Compute the total number of required modules.

3. Describe the configuration algorithm.

4. Write the formula to compute the minimum theoretical number of modules to build the
switch and to compare it with the actual number of adopted modules. (question out of
scope for the program 2021/22)

FFF

Exercise 12
Design a rearrangeable switch of size 500× 1000 using only modules of size 10× 10, with the
aim of minimizing the number of modules.

10

1. Describe the architecture.

2. Compute the total number of required modules.

3. Describe the configuration algorithm.

FFF

Exercise 13
Design a rearrangeable switch of size 400 × 500 using only modules of size 10 × 10, with the
aim of minimizing the number of modules.

1. Draw the architecture.

2. Compute the total number of required modules.

3. What is the simplest routing algorithm that can be adopted?

Solution:
C400×500 = 40× C10 + 10× C40×50 + 50× C10

Now the middle stage modules can be built as follows:

C40×50 = 4× C10 + 10× C4×5 + 5× C10 = 4× C10 + 5× C10 + 5× C10 = 14× C10

Hence,
C400×500 = 40× C10 + 10× 14× C10 + 50× C10 = 230× C10

FFF

Exercise 14
Design a rearrangeable switch of size 2000 × 4000 using only basic modules of size 10 × 10,
with the aim of minimizing the number of modules.

1. Describe the architecture.

2. Compute the total number of required basic modules.

3. Describe the configuration algorithm.

4. What would have been the approximated number of modules if the switch was designed
to be strictly-non-blocking?

Solution:
In short:

C4000×2000 = 600C10 + 10C400×200 = 2300C10

C400×200 = 60C10 + 10C40×20 = 170C10

C40×20 = 11C10

The corresponding strictly non-blocking network is expected to have roughly twice the number
of basic modules.

FFF

Exercise 15
Design a rearrangeable switch of size 4096 × 4096 using only modules of size 8 × 8, with the
aim of minimizing the number of modules.

11

1. What is the theoretical minimum number of modules needed? For the sake of easy
computation, use the following approximation: N ! ≈

√
NNN . (question out of scope for

the program 2021/22)

2. Describe the proposed architecture.

3. Compute the total number of required modules.

4. Compare the total number of required modules with the minimum one obtained in ques-
tion 1. (question out of scope for the program 2021/22)

5. Describe how to configure the overall network.

Solution: One possible solution is to use 8 as factor for the recursive construction. In this
case:

C4096 = 1024C8 + 8C512 = 3584C8

C512 = 128C8 + 8C64 = 320C8

C64 = 24C8

Another possible solution is to use
√
N for the recursive construction. In this case:

C4096 = 3× 64C64 = 4608C8

C64 = 24C8

which is worse than the alternative solution with 8 as factor.
The minimum number of modules Ĉ can be computed:

Ĉ =
log2(4096!)

log2(8!)
C8

Given the approximation:
log2(N !) = N log2N + 0.5 log2N

By simple computations (by hand):

log2(4096!) = 49158 log2(8!) = 25.5

and finally:

Ĉ ≈ 50000

25
= 2000C8

Hence, the devised architecture, with factor 8, shows less than twice the number of modules
than the minimum one.

FFF

Exercise 16 (out of scope for the program 2021/22)
Consider the design of an asymmetric N × αN switch, with α ∈ (0, 1).

1. Compute the number of switching configurations supported by the switch.

2. What is the complexity reduction with respect to an N × N switch when adopting an
optimal theoretical architecture? What is the complexity reduction obtained by adopting
the crossbar architecture?

If needed, use the Stirling approximation:

N ! ∼
√

2πN

(
N

e

)N
12

4

1

}

}3 2

.

.

.

.

.

.

}

}1

3

.

.

.

}

}2 3 1

4

44

Figure 1.11: Strictly non blocking Clos network: first factorization step

1.1.1 Recursive construction
Exercise 17
Design a 20, 000 × 20, 000 rearrangeable Clos network, using a recursive construction with a
basic building block being a crossbar of size 10× 10.

1. Compute the total number basic building blocks, showing all the involved steps.

Solution:

C20000 = 4000C10 + 10C2000 = (4000 + 12000)C10 = 16000C10

C2000 = 400C10 + 10C200 = (400 + 800)C10 = 1200C10

C200 = 40C10 + 10C20 = (40 + 40)C10

C20 = 4C10

FFF

Exercise 18
Design a Clos network, strictly non blocking, of size 8 × 8, with two ports for each module of
the first stage. Use only modules 2× 2 through recursive factorization.

1. Draw the network at each level of factorization, with all modules and links.

2. Draw the final network, with all modules and links.

3. Compute formally the complexity of the final network, in function of the complexity C(2)
of module 2× 2.

Solution: N = 8, p = 2. At the first factorization step, it will be:

p = 2

q =
N

p
= 4

l = 2p− 1 = 3

Figure 1.11 shows the network at the first factorization step.

C(8) = 8× 2C(2) + 3C(4)

Note: The complexity of a 2× 3 module = 2C(2). At the second factorization step:

p = 2

13

2x3

2x2

2x2

Figure 1.12: Implementation of a 2× 3 module

2x2

2x3 3x2

Figure 1.13: Strictly non-blocking 4× 4 Clos network

4x4

Figure 1.14: Strictly non-blocking 4× 4 network

q =
N

p
= 4

l = 2p− 1 = 3

Figure 1.13 shows the network obtained at the second factorization step.

C(4) = 4× 2C(2) + 3C(2) = 11C(2)

The complexity of the final network is:

C(8) = (16 + (3× 11))C(2) = 49C(2)

As alternative solution, a strictly non-blocking 4 × 4 network can be built using 4 modules
2× 2, according to the scheme presented in Fig. 1.14. Hence,

C(4) = 4C(2)

and in this case the final complexity is:

C(8) = (8× 2 + 3× 4)C(2) = 28C(2)

FFF

14

Exercise 19
Design a Clos network, strictly non blocking, of size 27× 27, with three inputs for each module
of the first stage. Use only modules 3× 3 through recursive factorization.

1. Draw the network at each factorization level, with all modules and links.

2. Draw the final network, with all modules and links.

3. Compute formally the complexity of the final network, in function of the complexity C(3)
of module 3× 3. Show all the involved mathematical steps.

4. Which routing algorithm can be used to find a path between an input and an output port?

Solution: The exercise is similar to problem 18. Here we compute only the complexity.
C(27) = 18C(3 × 5) + 5C(9). Now: C(3 × 5) = 2C(3); C(9) = 6C(3 × 5) + 5C(3) =
12C(3) + 5C(3) = 17C(3). Hence, in total C(27) = 36C(3) + 85C(3) = 121C(3).

FFF

Exercise 20
Design a Clos network, rearrangeable, of size 3h×3h with h = 1, 2, 3, . . ., recursively factorized
with factor 3, built on 3× 3 modules.

1. Compute formally the network complexity in terms of the number of contact points, in
function of h.

2. When h = 3,

(a) draw the total network, complete of all the interconnections.

(b) show all the steps of the reconfiguration algorithm, connecting: 1 → 27, 2 → 26,
3→ 25, 4→ 24, 5→ 23, 6→ 22.

FFF

Exercise 21
Consider an N×N rearrangeable Clos network, with N = 3h for some integer h > 1, factorized
recursively with factor 3, and using only 3× 3 modules. Let C3 be a 3× 3 module.

1. Evaluate formally the complexity in terms of C3 for any h.

Now consider the specific case N = 9.

1. Draw the whole network.

2. Compute the complexity in terms of C3.

3. Connect the following input-output couples: 1 → 4, 2 → 3, 3 → 1, 4 → 8, 5 → 7, 6 → 2,
7→ 6, 8→ 9, 9→ 5.

4. Show just the final Paull matrix at the end of the above connections.

FFF

Exercise 22
Design a Clos network, rearrangeable, symmetric, of size 8× 8, in which there exist two mod-
ules at the first stage. Through recursive factorization, the network is built around 2×2 modules
only.

15

1. Draw the final network with all the modules and interconnections.

2. Compute the complexity in terms of contact points.

3. Draw a Benes network 8× 8.

4. What is the less complex network among the two? Do they have the same blocking
probability? Why?

5. In the initial Clos network, connect the following input-output couples: 1 → 3, 2 → 7,
3→ 6, 4→ 1, 5→ 5, 6→ 8, 7→ 2, 8→ 4; explain briefly the algorithm used.

FFF

Exercise 23
Design a rearrangeable Clos network, N ×N , recursively factorized with factor

√
N . Assume

that the smallest switching module available is 2× 2.

1. Compute formally the complexity in terms of contact points.

2. How does the algorithm to configure the network work?

3. In the case N = 16, draw the complete network and highlight all the modules and inter-
connections.

4. Always in the case N = 16, show the final configuration to connect the following input-
output couples, following the algorithm described at question 2: (1,2), (2,10), (3,3), (4,15),
(5,16), (6,11), (7,9), (8,1), (9,4), (10,5).

FFF

Exercise 24
Design a rearrangeable Clos network, of size 1024× 1024, using 16× 16 modules only.

1. Draw the network.

2. Compute the final complexity, in function of the complexity of the 16× 16 modules.

FFF

Exercise 25
Design an 80 × 80 rearrangeable, non-blocking switching fabric, using two possible architec-
tures, the first built with recursive factorization of a Clos network with factor

√
N and the second

with factor 2.

1. Design the two final architectures.

2. Compute the complexity in terms of crosspoints for both architectures.

3. Discuss the advantages and disadvantages of each of them.

FFF

Exercise 26
Consider an N ×N rearrangeable Clos network, factorized recursively with factor 3, and using
only 3×3 modules. Let Cn be the number of n×n modules. We assume N to be a power of 3.

1. evaluate formally the complexity in terms of C3 and in terms of number of crosspoints

16

2. for N →∞, compare the complexity with the Benes network, in both cases1:

• in terms of number of elementary modules (i.e., C3 = C2)

• in terms of number of crosspoints

Now consider the case N = 9.

1. draw the whole network

2. connect the following input-output couples, showing the final Paull matrix: 1 → 4, 2 → 9,
3→ 1, 4→ 7, 5→ 3, 6→ 2, 7→ 8, 8→ 6, 9→ 5,

Solution: From the recursive factorization we have that p = 3 and q = N/p = N/3. The
resulting rearrangeable Clos network is shown in Figure 1.15. From the figure it is easy to see
that the complexity is:

C3×3(N) =
N

3
+ 3C

(
N

3

)
+
N

3
=

2

3
NC3 + 3C

(
N

3

)
=

2

3
NC3 + 3

[
2

3

N

3
C3 + 3C

(
N

32

)]
=

2

3
NC3 +

2

3
NC3 + 32C

(
N

32

)
=

2

3
NC3 +

2

3
NC3 + 32

[
2

3

N

32
C3 + 3C

(
N

33

)]
=

2

3
NC3 +

2

3
NC3 +

2

3
NC3 + 33C

(
N

33

)
=

2

3
NkC3 + 3kC

(
N

3k

)
(1.1)

The recursion stops when N/3k = 3. Therefore 3k = N/3 and k = log3N − 1. Substituting in
(1.1):

C3×3(N) =
2

3
N(log3N − 1)C3 +

N

3
C3 =

2

3
N log3NC3 −

N

3
C3

=

(
2

3
N log3N −

N

3

)
C3 (1.2)

The complexity in terms of 3× 3 modules is, from (1.2):

Cm3×3(N) =
2

3
N log3N −

N

3
=

2

3
N

log2N

log2 3
− N

3
≈ 0.42N log2N −

N

3

which, for N →∞, tends to
Cm3×3(N)→ 0.42N log2N (1.3)

In terms of crosspoints (C3 = 9):

Ccp3×3(N) = 9

(
2

3
N log3N −

N

3

)
= 6N

log2N

log2 3
− 3N ≈ 3.80N log2N − 3N

which, for N →∞, tends to
Ccp3×3(N)→ 3.80N log2N (1.4)

Recall that Benes network complexity is C(N) = (N log2N − N
2)C2. Therefore (C2 = 4):

CmBenes(N) = N log2N −
N

2
→ N log2N (1.5)

CcpBenes(N) = 4N log2N − 2N → 4N log2N (1.6)

1Recall that log2 3 ≈ 1.58

17

1

1

1

2

2

2

3

N/3N/3

3x33x3

N/3xN/3

Figure 1.15: (Ex. 26) Rearrangeable Clos network, N ×N , factorized recursively

1 1

2 2

3x33x3

3

1

3x3

3

2

3

Figure 1.16: (Ex. 26) Rearrangeable Clos network, 9× 9

3x33x3 3x3

3

2

1a

b

c3

2

1

1

2

3

4

5

7

8

9

6

1

2

3

4

5

6

7

8

9

Figure 1.17: (Ex. 26) Clos network configured by Paul algorithm

18

Combining (1.3) with (1.5) and (1.4) with (1.6):

Cm3×3
CmBenes

≈ 0.42

Ccp3×3
CcpBenes

≈ 0.95

Hence, for N → ∞ the rearrangeable Clos network uses less then half the modules as the
Benes network, but each 3× 3 module is more complex than a 2× 2 module so the number of
crosspoints is almost equal.

The whole network with N = 9 is shown in Fig. 1.16. The connections are configured using
the Paull algorithm. The final Paull matrix is the following: c a b

a, b − c
− b, c a


which corresponds to the network configuration of Fig. 1.17.

FFF

Exercise 27
Consider a N × N rearrangeable non-blocking network, with N = 4h and h = 1, 2, . . . ,. The
network is built according to one of two design architectures:

• recursive factorization with basic modules of size 2× 2;

• recursive factorization with basic modules of size 4× 4.

Answer the following:

1. Compute formally the complexity in terms (i) of basic modules and (ii) of crosspoints, for
both architectures: write the proper recursive equation and solve it.

2. Which architecture is optimal from the complexity point of view?

3. Which set of algorithms can be used to configure the connections in each architecture?

Solution: In the case of basic modules of size 2×2, the network is a Benes network, for which
we know that the number of modules is:

C(N) =

(
N log2N −

N

2

)
C2

and the corresponding number of crosspoints is:

X(N) = 4N log2N − 2N

In the case of basic modules of size 4× 4, the number of modules satisfies:

C(N) = 2
N

4
C4 + 4C

(
N

4

)
(1.7)

and in general

C

(
N

4k

)
= 2

N

4k+1
C4 + 4C

(
N

4k+1

)
(1.8)

19

By using (1.8) to unfold (1.7):

C(N) =
k

2
NC4 + 4kC

(
N

4k

)
for k = 1, . . . ,

1

2
log2N − 1 (1.9)

Now (1.9) becomes:

C(N) =

(
1

4
log2N −

1

2

)
NC4 +

N

4
C4 =

(
N

4
log2N −

N

4

)
C4 (1.10)

and the corresponding number of crosspoints is:

X(N) = 4N log2N − 4N

By comparing both the complexity in terms of basic modules and number of crosspoints,
the architecture with basic modules of size 4× 4 is the most convenient.

The algorithms to configure the Benes networks are the looping algorithm and the Paull’s
algorithm, whereas to configure the other network it is necessary to use the Paull’s algorithm.

FFF

Exercise 28
Consider a N×N rearrangeable Clos network with basic modules of size 10×10. Let N = 102

k

for some integer k = 1, 2, . . . The cost is evaluated in terms of number of basic modules.
Consider now two alternative architectures: (A1) in which the network is built recursively with
factor 10; (A2) in which the network is built recursively with factor

√
N .

1. Evaluate formally the cost C1, in function of N , for (A1)

2. Evaluate formally the cost C2, in function of N , for (A2)

3. Compare C1 and C2

4. Which control algorithm can be used for (A1)?

5. Which control algorithm can be used for (A2)?

6. Can (A1) and/or (A2) be used in the Automatic Main Distribution Frame in the central
office connecting the ADSL lines to the DSLAM? Why? (question out of scope for the
program 2021/22)

Solution:
Let n = 2k and N = 10n.

C1(10n) = 2× 10n−1C10 + 10C(10n−1) = 2h10n−1C10 + 10hC(10n−h)

for h = 0, . . . , n− 1. By setting h = n− 1:

C1(10n) = 2(n− 1)10n−1C10 + 10n−1C10 = (2n− 1)10n−1C10

from which:
C(N) = (2 log10N − 1)

N

10
C10

To evaluate C2, it is equivalent to slide 28 of Part II. The only difference if that

C(10n) = 3× 10n/2C(10n/2) ≈ 3h10nC(10n/2
h
)

C2(N) ≈ 3log2 n10nC10 = nlog2 3NC10 = (log10N)log2 3NC10

Both are configured using Paull algorithm.
Both cannot be applied in a AMDF because of possible reconfigurations, unless accepting

some interruptions.

20

FFF

Exercise 29
Design a rearrangeable switch of size 10, 000× 10, 000 using only modules of size 10× 10, with
the aim of minimizing the number of modules.

1. Describe the architecture.

2. Compute the total number of required modules.

3. Describe the configuration algorithm.

4. Write the formula to compute the minimum theoretical number of 10× 10 modules. Note
that the formula must be compatible with a standard scientific calculator. Recall the
Stirling approximation: N ! ≈

√
NNN . (question out of scope for the program 2021/22)

Solution:
Exploiting a standard recursive construction:

C10000 = 2000C10 + 10C1000 = (2000 + 10× 500)C10 = 7000C10

being
C1000 = 200C10 + 10C100 = (200 + 300)C10 = 500C10

being
C100 = 30C10

The minimum number of modules can be computed as:

Ĉ10 = log10!(10000!) =
log(10000!)

log(10!)
≈ 0.5 log(10000) + 10000 log(10000)

0.5 log(10) + 10 log(10)

Using a calculator:
Ĉ10 = 3809

which implies that the proposed solution is only (7000−3809)/3809 = 83% larger than the lower
bound.

1.1.2 Non-interruptible networks

Exercise 30 (out of scope for the program 2021/22)
Consider a 2000× 2000 switch built just using basic modules 10× 10.

1. Design a minimum-cost strictly non-blocking network. Draw the structure of the network
and compute the total number of basic modules.

2. Design a minimum-cost non-interruptible, rearrangeable switching network. Draw the
structure of the network and compute the total number of basic modules.

3. Are the two networks equivalent in terms of cost (i.e., number of basic modules) and
control (i.e., configuration algorithm)? Why?

Solution: To design a strictly-non-blocking network,

C2000,SNB = 200C10×19 + 19C200,SNB + 200C19×10

where
C10×19 = 2C10

21

C200,SNB = 20C10×19 + 19C20,SNB + 20C10×19

and
C20,SNB = 4C10

since 4 crossbar k × k can be always combined to build a crossbar (2k)× (2k). Hence,

C200,SNB = (20× 2 + 19× 4 + 20× 2)C10 = 156C10

and, finally,
C2000,SNB = (200× 2 + 19× 156 + 200× 2)C10 = 3764C10

To design a non-interruptible, rearrangeable (NIR) network,

C2000,NIR = 250C8×10 + 10C250,REAR + 250C10×8

where
C8×10 = C10

Hence,
C250,REAR = 25C10 + 10C25,REAR + 25C10

where, using the classical Clos construction:

C25,REAR = 3C9 + 9C3 + 3C9

where
C9 = C10 C3 = C10/3

Finally,
C25,REAR = 9C10

and
C250,REAR = 140C10

and
C2000,NIR = 1900C10

The first network has a complexity almost twice than the second one, but its control al-
gorithm is trivial. The control algorithm for the second network is a variant of Paul algorithm,
in which the two additional medium-stage modules are used to exploit multipath and avoid
interruptions.

FFF

Exercise 31 (out of scope for the program 2021/22)
Consider a 3000× 1000 switch built just using basic modules 10× 10.

1. Design a minimum-cost, strictly non-blocking network. Draw the structure o f the network
and compute the total number of basic modules.

2. Design a minimum-cost non-interruptible, rearrangeable switching network. Draw the
structure of the network and compute the total number of basic modules.

3. Are the two networks equivalent in terms of cost (i.e., number of basic modules) and
control (i.e., configuration algorithm)? Why?

Solution:

22

1. For the SNB network:

CSNB(3000× 1000) = 300C(10× 19) + 19CSNB(300× 100) + 100C(19× 10)

where
CSNB(300× 100) = 30C(10× 19) + 19C(30× 10) + 10C(19× 10)

where C(30 × 10) = 3C(10). Hence, CSNB(300 × 100) = 137C(10) and CSNB(3000 ×
1000) = 3403C(10).

2. For the NIR network, two possible architectures are possible.

(a) One solution is:

CNIR(3000× 1000) = 375C(8× 10) + 10CREAR(375× 125) + 125C(10× 8)

where C(8× 10) = C(10) and

CREAR(375× 125) = 38C(10) + 10C(38× 13) + 13C(10)

where C(38 × 13) = 8C(10) thanks to a “grid” architecture. Hence, CREAR(375 ×
125) = 131C(10) and CNIR(3000× 1000) = 1810C(10).

(b) Another solution is:

CNIR(3000× 1000) = 300C(10× 12) + 12CREAR(300× 100) + 100C(12× 10)

where C(12× 10) = 2C(10) and

CREAR(300× 100) = 30C(10) + 10C(30× 10) + 10C(10)

where C(30×10) = 3C(10). Hence, CREAR(300×100) = 70C(10) and CNIR(3000×
1000) = 1640C(10).

3. By comparing the final cost of SNB and NIR networks, NIR networks show a smaller
complexity (about a factor 2) in terms of basic modules. On the contrary, the control for
a SNB network is much simpler than the one for a NIR network, since it is just based
on computing a generic path between the required source and destination (e.g, using a
breath first search algorithm), whereas NIR networks require to run Paul algorithm and
exploit double paths for the first and the last stages of the network.

FFF

Exercise 32 (out of scope for the program 2021/22)
Consider a 1000× 1000 switch built just using basic modules 10× 10.

1. Design a minimum-cost, strictly non-blocking network. Draw the structure of the network
and compute the total number of basic modules.

2. Design a minimum-cost non-interruptible, rearrangeable switching network. Draw the
structure of the network and compute the total number of basic modules.

3. Are the two networks equivalent in terms of cost (i.e., number of basic modules) and
control (i.e., configuration algorithm)? Why?

23

Solution:
For the SNB:

C1000 = 200C10×19 + 19C100 = 400C10 + 19C100 = (400 + 19× 59)C10 = 1521C10

being
C100 = 20C10×19 + 19C10 = 59C10

For the NIR, the first possibile solution is:

C1000,NIR = 10C125,REAR + 250C8×10 = (10× 66 + 250)C10 = 910C10

being
C125,REAR = 26C10 + 10C13 = (26 + 10× 4)C10 = 66C10

being
C13 = 4C10

For the NIR, the second possible solution is:

C1000,NIR = 200C10×12 + 12C100,REAR = (400 + 12× 30)C10 = 760C10

being
C100,REAR = 30C10

1.2 Benes networks
Exercise 33
For a 8× 8 Benes network, use the looping algorithm to configure the network and connect the
input output couples in table 1.1.

INPUT OUTPUT

1 6
2 4
5 8
6 3
7 2
8 5

Table 1.1: Connections to configure in Ex. 33

Solution: As shown in figure 1.18, a 8 × 8 Benes network has 5 stages, each
of them built by 4 2 × 2 modules. The input sequence chosen to configure is:
1.startin = 2; 2.startin = 8; 3.startin = 7. The result after this first step of the algo-
rithm is shown in figure 1.19.

Then, the looping algorithm is applied in the internal modules of the network. For the upper
central module, the chosen input sequence is: 1.startin1 = 2; 2.startin1 = 8. The final
configuration is shown in figure 1.20. For the lower central module, the chosen input sequence
is: 1.startin1 = 1; 2.startin1 = 6. The result is shown in figure 1.21. The final result is given
by the union of the three steps of the algorithm and is shown in figure 1.22.

FFF

24

1

2

4

5

6

7

8

3

1

2

4

5

6

7

8

3

Figure 1.18: Benes network without connections

1

2

4

5

6

7

8

3

1

2

4

5

6

7

8

3

4x4

4x4

Figure 1.19: After the first step of the looping algorithm. Continuous lines refer to forward
connections, whereas dot lines refer to backward connections.

458582

Figure 1.20: After the second step of the looping algorithm, applied to the upper central module

2

3

66

7

1

Figure 1.21: Result of the second step of the looping algorithm, applied to the lower central
module

1

2

4

5

6

7

8

3

1

2

4

5

6

7

8

3

Figure 1.22: Final result of the looping algorithm

25

INPUT OUTPUT

1 3
2 6
3 2
4 1
5 8
6 4
7 5
8 7

Table 1.2: Input-output couples to connect

1

2

4

5

6

7

8

3

1

2

4

5

6

7

8

3

4x4

4x4

Figure 1.23: Results after the first step of the looping algorithm

2

3

1

3

5

8

5

7

Figure 1.24: Results after the second step of the looping algorithm on the upper central section

1

4

2

4

6

7

6

8

Figure 1.25: Results after the second step of the looping algorithm on the lower central section

Exercise 34
For a 8×8 Benes network, use the looping algorithm to connect the input-output coupled shown
in table 1.2.

Solution: The initial network without connections is shown in Fig. 1.18. Now apply the looping
algorithm; the starting inputs are: 1.startin = 1; 2.startin = 3. The result of this first step
is shown in Fig. 1.23. Then the looping algorithm is applied on both the central sections of the
network. For the upper section, the starting inputs are: 1.startin1 = 1; 2.startin1 = 5. The
result is shown in Fig. 1.24. For the lower section, the starting inputs are: 1.startin1 = 2. The
result is shown in Fig. 1.25. The final result is given by collecting the three partial results above

26

1

2

4

5

6

7

8

3

1

2

4

5

6

7

8

3

Figure 1.26: Final result of the looping algorithm

and it is shown in Fig. 1.26.

FFF

Exercise 35
Design an 8 × 8 Benes network. Connect the following input-output couples: 1 → 3, 2 → 7,
3→ 1, 4→ 2, 5→ 4, 7→ 6, 8→ 5.

1. Draw the complete network, showing all the recursively built modules.

2. Use the looping algorithm to configure the network. Show graphically the used loops,
assuming that the inputs are always considered in increasing sequence.

3. Show the final configuration of the network, after running the looping algorithm.

4. Is it possible to use Paull algorithm to configure the network? Why? If true, use it show-
ing the evolutions of Paull matrix at each addition of a new connection; the connection
sequence to choose is given by the increasing number of inputs.

5. Draw the final configuration of the network, after running the Paull algorithm.

6. Is there any difference between the final configurations obtained by the two algorithms?
Is it always like this? Why?

Solution: For the first 4 questions, the exercise is the same as exercise 33. The loops to
consider are the following (using the notation “in-out”):

• 8× 8 switch: (1-3, 5-4, 2-7); (3-1, 4-2); (7-6, 8-5). Starting inputs: 1,3,7.

• Upper 4 × 4 switch, with connections 1 → 2, 2 → 1, 4 → 3: (1-2, 2-1); (4-3). Starting
inputs: 1,4.

• Lower 4 × 4 switch, with connections 1 → 4, 2 → 1, 3 → 2, 4 → 3: (1-4, 4-3, 3-2, 2-1).
Starting input: 1.

It is possible to use Paull algorithm, since the Benes network is a particular rearrangeable
Clos network. For the 8× 8 switch, adding the connections 1→ 3, 2→ 7, 3→ 1, 4→ 2, 5→ 4,

27

7→ 6, 8→ 5, the sequence of Paull matrices is:

1→ 3 :


− U − −
− − − −
− − − −
− − − −

 ; 2→ 7 :


− U − D
− − − −
− − − −
− − − −

 ; 3→ 1 :


− U − D
U − − −
− − − −
− − − −

 ;

4→ 2 :


− U − D
U,D − − −
− − − −
− − − −

 ; 5→ 4 :


− U − D
U,D − − −
− D − −
− − − −

 ;

7→ 6 :


− U − D
U,D − − −
− D − −
− − U −

 ; 8→ 5 :


− U − D
U,D − − −
− D − −
− − U,D −


For the upper 4 × 4 switch, adding the connections 1 → 2, 2 → 1, 4 → 3, the sequence of

the Paull matrices is the following:

1→ 2 :

[
U −
− −

]
; 2→ 1 :

[
U,D −
− −

]
; 4→ 3 :

[
U,D −
− D

]
;

For the lower 4 × 4 switch, adding the connections 1 → 4, 2 → 1, 3 → 2, 4 → 3, the
sequence of the Paull matrices is the following:

1→ 4 :

[
− U
− −

]
; 2→ 1 :

[
D U
− −

]
; 3→ 2 :

[
D U
U −

]
; 4→ 3 :

[
D U
U D

]
In this case, the final configuration obtained through Paull algorithm is the same as the one

through looping algorithm. It is just a chance, since other decision choices (when possible)
might result in another configuration.

FFF

Exercise 36
Draw the complete 16× 16 Benes network. Describe the algorithm to configure the network.

Coherently with this algorithm, connect the following input-output couples: 1 → 6, 2 → 5,
3 → 16, 4 → 7, 5 → 15, 6 → 1, 7 → 8, 8 → 14, 9 → 9, 10 → 2, 11 → 10, 12 → 3, 13 → 11,
14→ 4, 15→ 12, 16→ 13.

FFF

Exercise 37
Consider a N × (N/2) rearrangeable switch, acting as concentrator, built with 2 × 2 basic
modules exploiting recursive factorization. Assume N = 2h, for some positive integer h ≥ 2.

1. Compute formally the total number of basic modules.

2. Compute the minimum theoretical number of modules necessary to implement the switch
and compare with the actual complexity of the designed architecture. If needed, use
Stirling approximation. (question out of scope for the program 2021/22)

log2 n! ∼ n log2 n− 1.44n+ 0.5 log2 n+ 1.32

3. Compare the actual complexity with the one achieved designing a symmetric N × N
Benes network and then removing the useless modules just at the last stage of the whole
network

28

4. Consider the control algorithm to configure the N × (N/2) switch.

(a) Can the Paul algorithm be used? Why?

(b) Can the looping algorithm be used? Why?

Solution:

1. Let C(N1, N2) be the complexity of a N1 × N2 switch. Let C2 be a basic 2 × 2 module.
Thus, for any k = 1, . . . , log2N − 1:

C(N,N/2) =
N

2
C2 +

N

4
C2 + 2C(N/2, N/4) = k

3

4
NC2 + 2kC(N/2k, N/2k+1)

Hence,

C(N,N/2) =
3

4
N(log2N − 1)C2 +

N

2
C2 =

(
3

4
N log2N −

N

4

)
C2

2. The total number of switching configurations is

X =
N !(
N

2

)
!

and thus the minimum number of 2× 2 modules is

Ĉ(N,N/2) = log2X = log2(N !)− log2((N/2)!) ∼

N log2N − 1.44N − N

2
log2

N

2
− 1.44

N

2
=
N

2
log2N − 1.66N

Thus the relative complexity of the proposed solution is

C(N,N/2)

Ĉ(N,N/2)
→ 3

2

i.e. it requires 50% more modules than the minimum theoretical one.

3. The complexity of reduced Benes network C ′(N,N/2) is obtained by removing N/4 mod-
ules in the last (log2N − 1) stages and hence the final complexity is:

C ′(N,N/2) =

(
N log2N −

N

2

)
C2 −

N

4
(log2N − 1)C2 =

(
3

4
N log2N −

N

4

)
C2

which is perfectly equivalent to the previous solution.

4. Paul algorithm can be used, in a recursive way, since the switch is rearrangeable. Looping
algorithm can be also used, in a recursive way, since the number of modules in the middle
stage is always two for each level of recursion.

FFF

Exercise 38
Consider a N × (N/2) rearrangeable switch, acting as concentrator, built with 2 × 2 basic
modules, exploiting recursive factorization. Assume N = 2h, for some positive integer h ≥ 2.

1. Consider a first architecture with recursive factorization.

29

(a) Compute the total number of basic modules, showing all the steps to solve the
corresponding recursive equation.

(b) Draw the complete network topology for a 8×4 switch and compute the total number
of basic modules.

(c) Can Paul and looping algorithms be used to configure the network? Why?

2. Consider a second architecture built by designing a symmetric N × N Benes network
and then removing the useless modules starting from at the last stage.

(a) Compute the total number of basic modules (starting from the formula for Benes
networks).

(b) Draw the complete network topology for a 8×4 switch and compute the total number
of modules.

(c) Can Paul and looping algorithms be used to configure the network? Why?

3. What is the best among the two architectures?

Solution:
The problem is almost identical to Ex. 37. In addition:
1.(b) Using recursive constructions, the 8 × 4 switch has complexity: C(8, 4) = 6C2 +

2C(4, 2) = (6 + 2× 5)C2 = 16C2. The corresponding network is shown in Fig. 1.27.

Figure 1.27: Network (b) for Ex. 38

Note that, using a simpler construction, C(4, 2) = 3C2 and thus C(8, 4) = 6C2 + 2C(4, 2) =
(6 + 2× 3)C2 = 12C2. The corresponding network is shown in Fig. 1.28.

Figure 1.28: Alternative network (b) for Ex. 38

2.(c) Using a 8× 8 Benes network and removing 4 useless modules (shown as dotted), we
obtain the architecture in Fig. 1.29, whose total complexity is 16C2. Thus, the complexity is
equivalent to the first architecture.

30

Figure 1.29: Network (c) for Ex. 38

000000 000 000

010 100 100 010

110 101 101 011

001 010 010 100

101 011 011 101

011 110 110 110

111111 111111

100 001 001 001

00

10

01

11 11

01

11

00 00

10

10

01

Figure 1.30: Banyan network with Baseline layout (ex. 39)

000000 000 000

010 100 100 010

110 101 101 011

001 010 010 100

101 011 011 101

011 110 110 110

111111 111111

100 001 001 001

00

10

01

11 11

01

11

00 00

10 01

10

Figure 1.31: Banyan network with Baseline layout - blocking configuration (ex. 39)

1.3 Banyan networks

Exercise 39
Draw an 8×8 Banyan network, having Baseline layout; identify the nodes and the edges of the
network. Connect: 2/3, 3/5, 4/7, 5/1, 6/2. Is it possible? Why? Connect: 2/0, 3/2, 4/3, 5/5, 6/7.
Is it possible? Why?

Solution: The Banyan network with Baseline layout, with the identifiers, is shown in Fig. 1.30.
Fig. 1.31 shows the problem in connecting the first set of links: input 6 cannot be connected
with output 2. Note that even the set of inputs is compact, the set of outputs is not monotone,
and this configuration does not satisfy the sufficient conditions to avoid blocks. Fig. 1.32 shows
the solution for the second set of connections, which now satisfy the sufficient conditions for
being non-blocking.

FFF

31

000000 000 000

010 100 100 010

110 101 101 011

001 010 010 100

101 011 011 101

011 110 110 110

111111 111111

100 001 001 001

00

10

01

11 11

01

11

00 00

10 01

10

Figure 1.32: Banyan network with Baseline layout - non-blocking configuration (ex. 39)

Exercise 40
Design a 8× 8 self-routing multistage network, adopting basic modules of size 2× 2.

1. Draw the whole network with all the interconnections and modules.

2. Identify all the modules, input ports, output ports and all the links in order to support
self-routing.

3. How does the self-routing work?

4. What are the properties of the network in terms of blocking?

5. Using the Lee method, find the blocking probability in function of the overall traffic λ
(measured in Erlang) feeding the whole network. (question out of scope for the program
2021/22)

6. Is the blocking probability obtained with Lee compatible with the properties of the net-
works highlighted in question 4? (question out of scope for the program 2021/22)

Solution:
The problem is a variant to Ex. 39.
About question 5, the Lee graph is just a sequence of two edges in series. The probability

of busy for each edge is λ/8, thus the blocking probability is 1− (1− λ/8)2.

FFF

Exercise 41
Draw an 8× 8 Banyan network, with Shuffle (Ω) layout; identify the nodes and the edges of the
network. Connect: 2/0, 3/2, 4/3, 5/5, 6/7.

Solution: See Fig. 1.33 for the solution. Fig. 1.34 shows that the configuration is non-blocking.

FFF

Exercise 42
Draw an 8 × 8 Banyan network with Banyan layout; identify the nodes and the edges of the
network. Connect: 2/0, 3/2, 4/3, 5/5, 6/7.

Solution: See Fig. 1.35 for the solution. Fig. 1.36 shows that the configuration is non-blocking

FFF

32

000000 000 000

010 010 010 010

011 011 011 011

100 100 100 100

101 101 101 101

110 110 110 110

111111 111111

001 001 001 001

00

01

10

11 11

10

11

00 00

01

10

01

Figure 1.33: Banyan network with Shuffle layout (ex. 41)

001

010

101

110

111

000

011

100

00

11 11 11

00 00

10

01

001 001 001

010

100

011

101

110 110 110

111111 111

000000 000

01

10

01

10

010

011

100

101

010

011

100

101

Figure 1.34: Banyan network with Shuffle layout - non-blocking configuration (ex. 41)

00

10

01

11 11 11

00 00

01

10
001 010 010

110 101

010 100

000000 000 000

100 001 001 001

101 011 101

011 110 110 110

111111 111111

010

011

100

10

01

100

101

011

Figure 1.35: Banyan network with Banyan layout (ex. 42)

Exercise 43
Design a self-routing network, of size 8× 8.

1. From which other network is possible to obtain the required network? How?

2. Draw the network, identify all the inputs, the outputs and the modules.

3. Show how the following connections are self-routed: 1→ 8, 2→ 7, 3→ 6.

4. Is the network blocking? Why?

FFF

33

00

10

01

11 11 11

00 00

01

10
001 010 010

110 101

010 100

000000 000 000

100 001 001 001

101 011 101

011 110 110 110

111111 111111

010

011

100

10

01

100

101

011

Figure 1.36: Banyan network with Banyan layout - non-blocking configuration (ex. 42)

Exercise 44
Design a Banyan network, of size 16× 16.

1. From which other network is possible to obtain the required network? How?

2. Draw the whole network, identify all the inputs, the outputs and the modules.

3. Banyan networks are blocking. Provide an example of blocking configuration.

4. How is it possible to design a complete non-blocking network starting from a Banyan
one?

FFF

Exercise 45
Design a Banyan network, of size 8× 8.

1. From which other network is possible to obtain the required network? How?

2. Draw the whole network, number properly all the inputs, the outputs and the modules.

3. Banyan networks are blocking. Provide an example of blocking configuration with at least
4 connected input-output pairs.

4. How is it possible to design a non-blocking network starting from a Banyan one?

1.4 Cantor networks
Exercise 46 (out of scope for the program 2021/22)
Draw a generic N × N Cantor network. What are its properties? Prove formally the network
complexity.

FFF

Exercise 47 (out of scope for the program 2021/22)
Design a 8× 8 Cantor network.

1. What are the properties of such network?

2. Draw the complete network.

3. Describe the algorithm to configure the network.

34

4. Configure the network following exactly the following sequence of input-output couples:
4→ 1, 5→ 6, 6→ 2, 7→ 4, 8→ 3, 1→ 5, 2→ 8, 3→ 7.

FFF

Exercise 48 (out of scope for the program 2021/22)
Consider a 4× 4 Cantor network.

1. Draw it.

2. Discuss its properties in terms of blocking.

3. Describe the routing algorithm to configure the network.

4. Show the connections to support the following input-output couples: 1→ 4, 2→ 3, 3→ 1
and 4→ 2.

5. Apply Lee’s method to evaluate the blocking probability of the network. (question out of
scope for the program 2021/22)

6. Is the blocking probability evaluated by Lee’s method compatible with the blocking prop-
erties of the network? Why?

7. Is there any alternative switching architecture based on 2 × 2 modules, with the same
blocking properties of Cantor network, but lower complexity? If yes, which one?

Solution:
The corresponding Cantor network is in the figure.

The algorithm to configure the network is a just a breadth-first search in the corresponding
pi-graph, considering only the available links.

The reductions in the pi-graph is shown in the figure, where only the links for which a
contention may occur are shown. Note that the edges from the input to each Benes network
and from each of them to the outputs are always available.

b

a

a

a

a

a

a

aa

b

b

b

Let ρ be the average load at any input. Now: a = 4ρ/8 = ρ/2, b = 1 − (1 − a)2 and finally the
blocking probability is

P (blocking) = b4 = (1− (1− ρ/2)2)4 = ρ(1− ρ/4)4

35

Note that for this simple case it is possible to improve the approximation by using ρ = 3ρ/8
since, when adding a new circuit, the average number of pre-existing circuits is 3ρ and not 4ρ
as used in evaluating a above.

In both cases, when ρ = 1, the blocking probability appears to be larger than 0 (precisely,
around 0.15-0.30), even if the network has been designed as strictly non-blocking. This is due
to the approximated method adopted.

An example of alternative network is a classical Clos network, built with 2×2 modules. The
final complexity will be:

C4×4 = 2C2×3 + 3C2×2 + 2C3×2 = 4C2×3 + 3C2×2 = 8C2×2 + 3C2×2 = 11C2×2

which is slightly better (one less module) than the Cantor network proposed above. The control
algorithm is the same.

FFF

Exercise 49 (out of scope for the program 2021/22)
Draw a generic N ×N Cantor network.

1. How can be designed?

2. What is its blocking probability?

3. Prove formally the network complexity, after defining properly the adopted notation.

4. Which algorithm can be used to route the traffic on it?

1.5 Comparison among networks

Exercise 50 (out of scope for the program 2021/22)
Compute the number of possible switching states for a crossbar, a Banyan network and a
Benes networks, all of them of size N × N . According to this computation, which network is
blocking? Why? What is the probability that a random permutation is blocking for a Benes
network? If useful, the Stirling approximation is the following, for n→∞: log n! ≈ n log n− n.

Solution: The crossbar allows N ! configurations, which is equal to the number of switching
states; asymptotically, for N → ∞, the number of configurations is Scrossbar = NN , using
Stirling approximation.

The Benes network is composed by (2 log2N − 1)N/2 modules of size 2× 2, each of them
with only two possible states. Hence, the number of switching states of the Benes network is:
2(2 log2N−1)N/2. Asymptotically, this is 2(2 log2N)N/2 = 2N log2N , from which SBenes = NN .

The Banyan network is composed by (log2N)N/2 modules of size 2×2. Hence, the number
of switching states is 2(log2N)N/2, which is equal, asymptotically, to SBanyan = NN/2.

A necessary condition for non-blocking is that the number of states in the switching matrix
is at least equal to the number of possible permutations N ! ≈ NN . This condition holds only
for the crossbar and the Benes network, whereas it does not hold for the Banyan network:

SBanyan � Scrossbar ≈ SBenes

Indeed, the Banyan network is blocking.
Now the probability that a permutation in a Banyan network is non-blocking is:

SBanyan
N !

≈ NN/2

NN
= e

N
2
logN−N logN = e−

N
2
logN

36

Hence the probability of a blocking configuration is:

1− e−
N
2
logN

which saturates to 1 very quickly when N grows: this means that almost all configurations are
blocking.

FFF

Exercise 51 (out of scope for the program 2021/22)
1. Define formally: (i) Clos network, (ii) Benes network, (iii) Cantor network and (iv) Banyan

network.

2. Compute the theoretical complexity in terms of contact points, in function of the number
N of the ports.

3. Which network is the less complex? With which disadvantages?

Solution:

• Clos network:

– 3 stages

– complete interconnection web between stages

– C(Clos) ≥ (2p−1)(2pq+ q2) if strictly non-blocking; C(N) ≥ 2qp2 +pq2 if rearrange-
able; where pq = N .

• Benes network:

– Clos network

– rearrangeable

– recursively factorized with factor 2

– N = 2n and p = 2

– C(Benes) = 4N(log2N − 1) + 2N

• Cantor network:

– strictly non-blocking

– recursively factorized with factor 2

– built by putting log2N Benes networks in parallel, with N de/multiplexer 1 : log2N at
the first and at the last stage

– C(Cantor) = log2NC(Benes) ≈ 4N(log2N)2

• Banyan network

– blocking network

– self-routing

– built by cutting after the log2N -th stage in the Benes network

– C(Banyan) = 2N log2N

The Banyan network, even if less complex, cannot be used alone as switching network
since it is blocking.

37

N Crossbar Benes Clos
√
N Clos N/2

4
16
N

Table 1.3: Complexity in terms of contact points (Ex. 52)

N Crossbar Benes Clos
√
N Clos N/2

4 1 module 4× 4 6 mod. 2× 2 6 mod. 2× 2 6 mod. 2× 2
16 1 m. 16× 16 56 m. 2× 2 12 m. 4× 4 16 m. 2× 2, 2 m. 8× 8

N 1 m. N ×N N logN − N
2 m. 2× 2 3

√
N m.

√
N ×

√
N N m. 2× 2, 2 m. N2 ×

N
2

Table 1.4: Features for the networks designed at point 1

N Crossbar Benes Clos
√
N Clos N/2

4 16 24 24 24
16 256 224 192 192
N N2 4N logN − 2N 3

√
NN 4N +N2/2

Table 1.5: Complexity in terms of points of contacts

FFF

Exercise 52
Design a non-blocking, rearrangeable network of size N ×N , in the cases N = 4 and N = 16.
The considered architectures are: crossbar, Benes network, Clos network with

√
N modules

at the first stage, Clos network with N/2 modules at the first stage.

1. In all cases and with the four architectures, draw the corresponding networks with all
interconnections, specifying the number and dimensions of every module.

2. Complete Table 1.3.

3. In each of the three cases: N = 4, N = 16, N → ∞, which network minimizes the
complexity?

Solution:

1. We omit the drawing, which should have the features reported in table 1.4.

2. See Table 1.5.

3. In the case N = 4, the network with the minimum complexity is the crossbar, for N = 16
it is the Clos network (in both cases), for N →∞ it is the Benes network.

1.6 Lee method
Exercise 53 (out of scope for the program 2021/22)
Consider a 12 × 16 interconnection network for circuit switching, composed by 9 switches in-
terconnected as a 3 stage network, with double links between each pair of switches in the 1st
and 2nd stage, as shown in Fig. 1.37.

38

2

Figure 1.37: Circuit-switching topology (Ex. 53).

1. Using the Lee method, compute the blocking probability in function of the normalized
offered load h, with h ∈ [0, 1], at each input port. Draw the original graph and show all
the steps for its reduction.

2. What are the traffic admissibility conditions for the considered network? Provide an intu-
itive explanation for them.

3. Assume that the total offered traffic is 3 Erlang. Write the formula for the corresponding
blocking probability.

4. Which routing algorithm can be adopted for each new incoming circuit?

Solution: 1. By applying the Lee method we have the graph reduction steps shown in
Fig. 1.38.

b

b

b

a
a
a

a

c

c

d

d

e

Figure 1.38: Solution for Ex. 53

with

c = a2

d = 1− (1− c)(1− b) = 1− (1− a2)(1− b)
Pb = e = d2 = (1− (1− a2)(1− b))2

Given the offered load h at each input:

a = 12h/12 = h b = 12h/8 = 3h/2

and thus the blocking probability becomes:

Pb = (1− (1− h2)(1− 3h/2))2 = (3h/2 + h2 − 3h3/2)2

2. The admissibility conditions are

a ≤ 1, b ≤ 1 ⇒ h ≤ 2/3

The final condition assures that the links between the 2nd and the 3rd stages are not over-
loaded, being the “bottleneck” in the architecture.

39

For any h > 2/3, Pb = 1.
3. If the total traffic is 3 Erlang, then h = 3/12 = 1/4, then

Pb = (3/8 + 1/16− 3/128)2

4. To compute the routing, a simple graph traversal algorithm would work (e.g., depth-first
search, breadth-first search) on the graph in which only the available links are considered.

FFF

Exercise 54 (out of scope for the program 2021/22)
Design a rearrangeable Clos network of size 30×30, built with first stage modules with 5 inputs.

1. Draw the complete network, evaluating the dimensions of every module.

2. Compute the total complexity in terms of contact points.

3. Using the Lee approximation, compute the blocking probability Pb when ρ, with ρ < 1, is
the load for each input. Show all the reduction steps on the Lee graph.

4. In the case ρ = 0.5, compute Pb.

5. What does it mean that Pb > 0 in this rearrangeable network?

Solution:

1. First and third stages: 6 modules 5× 5. Second stage: 5 modules 6× 6.

2. There exist 480 contact points, in total.

3. For the graph reduction, see the class notes. The final formula to obtain is: Pb = [1− (1−
ρ)2]k where k = 5 in this case.

4. Applying the formula for ρ = 0.5: Pb = 0.2373.

5. The network is rearrangeable, hence it is not blocking. This seems to be in contradiction
with Pb > 0. But, first, the Lee model is approximated since it does not take into account
the correlation among connections. Second, the blocking probability computed by Lee
method refers to the fact that, given a connection state in the interconnection network,
an idle input cannot be connected to an idle output; in this case, the network is recon-
figured. Hence, Pb can be seen as the approximated reconfiguration probability for a
rearrangeable network.

FFF

Exercise 55 (out of scope for the program 2021/22)
Design a 512 × 512 switch, for which the blocking probability is less than 0.001. Each input is
observed busy on average for 260 seconds on an observation interval of 320s.

1. Compute the total traffic (measured in Erlang) loading the switch.

2. Design the switch with a Clos network, in which the inputs are divided in 32 modules of
size 16× k:

• Draw the final network and specify the dimension of every module.

• Compute k to satisfy the blocking requirement and to minimize the total complexity
of the switch.

40

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

16 32

k

Blocking probability for Clos network

Figure 1.39: Blocking probability for Clos network

• Compute the final complexity in terms of number of contact points.

• What would be the value of k and the complexity if the network was strictly non
blocking?

3. Design the switch with a symmetric network with two stages, in which inputs are divided
among 32 modules.

• Draw the final network and specify the dimension of every module.

• Compute the blocking probability.

• If the blocking requirement is not satisfied, consider the same network with two
stages but with l parallel links. Compute l to satisfy the blocking requirement and to
minimize the total complexity of the switch.

• Compute the final complexity in terms of number of contact points.

4. Design the switch with a crossbar.

• Compute the final complexity in terms of number of contact points.

5. Compare the performance and the complexity of the three solutions considered above.

Solution:

1.
ρtot = 260/320× 512 = 416 Erlang

2. Clos network: Through the graph reduction, it is obtained:

a = P (busy link) =
ρtot
32k

from which the blocking probability is:

Pb = (1− (1− a)2)k =

(
1−

(
1− ρtot

32k

)2)k
which is shown in Fig. 1.39. Hence, k = 26 meets the blocking requirement. The final
complexity is:

C = 2× 32× (16× 26) + 26× (32× 32) = 53248

41

0.0001

0.001

0.01

0.1

1

1 1.5 2 2.5 3 3.5 4

l

Blocking probability for 2 stage network

Figure 1.40: Blocking probability for the two stage switch

If the network was strictly non blocking, then k = 31 and

C = 2× 32× (16× 31) + 31× (32× 32) = 63488

3. Two stages network: 32 modules are present at the first stage, of size 16 × 32. The
second stage is symmetric to the first one. The blocking probability is:

Pb = ρtot/322 = 0.41

If there are l parallel links, the blocking probability becomes:

Pb =
(ρtot

1024l

)l
which is shown in Fig. 1.40. To obtain the required Pb, it is enough to set l = 4. The
number of corresponding contact points is:

C = 2× 32(16× 32)× 4 = 131072

4. Crossbar: The blocking probability is zero. The final complexity is:

C = 5122 = 262144

FFF

Exercise 56 (out of scope for the program 2021/22)
Consider a 16 × 16 Clos network, symmetric, rearrangeable, with (case A) 2 inputs for each
first-stage module, (case B) 4 inputs for each first-stage module.

Draw the corresponding pi-graph for both cases and compute the blocking probability. Is
the final network blocking? In both cases? Why? What is the meaning of this result?

FFF

Exercise 57 (out of scope for the program 2021/22)
Design an 8 × 4 switch (i.e., a concentrator) using a Clos network in which the number of
modules at the i-th stage is ri. In both the following cases, design the network such that it is
rearrangeable non blocking and with minimum complexity.

42

• Case A: r1 = 4 and r3 = 2.

• Case B: r1 = 4 and r3 = 1.

In both cases:

1. Draw the total network, with all modules and all interconnections.

2. Compute the total complexity.

3. Draw the Paul matrix and explain the meaning of each row, each column and each ele-
ment of the matrix.

4. What is the algorithm to configure the network?

5. Using the Lee method, compute the blocking probability when the total offered load to
the concentrator is 2 Erlang.

6. Is the blocking probability non null? Why? What is the meaning of such result?

7. According to Lee method, which case is with the lower blocking probability? Does it
correspond to the case with higher or lower complexity?

Solution:

• Questions 1, 2, 5:

Case A.

4

3

2

1

1 1

2 2

2 x 2

4 x 2 2 x 2

Figure 1.41: Rearrangeable Clos network in case A.

p

p

p

ba

Figure 1.42: Equivalent graph for Clos network in case A.

C(8× 4) = 4C(2× 2) + 2C(4× 2) + 2C(2× 2) = 40

43

p = 2 Erlang, a =
p

4× 2
= 0.25, b =

p

2× 2
= 0.5

P (block) = [1− P (free)]2 = [1− (1− a)(1− b)]2 ' 0.39

Case B.

4

3

2

1

4 x 1

4

3

2 x 4

2

1

1

4 x 4

Figure 1.43: Rearrangeable Clos network in case B.

p

p p

a b
a

a
a

b

b
b

Figure 1.44: Equivalent graph for Clos network in case B.

C(8× 4) = 4C(2× 4) + 4C(4× 1) + C(4× 4) = 64

p = 2 Erlang, a =
p

4× 4
= 0.125, b =

p

4
= 0.5

P (block) = [1− P (free)] = [1− (1− a)(1− b)]4 ' 0.10

• Questions 3, 4: see class notes.

• Question 6: The blocking probability is non null, even if the network is non blocking,
because of the approximations of Lee method (uniform traffic and uncorrelated state of
the links among different stages). This probability can be thought as the probability of
rearrange the network.

• Question 7: case B is the one with lower blocking probability, but it corresponds to an
higher complexity.

FFF

Exercise 58 (out of scope for the program 2021/22)
Design an 16 × 4 switch (i.e., a concentrator) using a Clos network in which the number of
modules at the i-th stage is ri. In both the following cases, design the network such that it is
rearrangeable non blocking and with minimum complexity.

44

• Case A: r1 = 4 and r3 = 2.

• Case B: r1 = 4 and r3 = 1.

In both cases:

1. Draw the total network, with all modules and all interconnections.

2. Compute the total complexity.

3. Draw the Paul matrix and explain the meaning of each row, each column and each ele-
ment of the matrix.

4. What is the algorithm to configure the network?

5. Using the Lee method, compute the blocking probability when the total offered load to
the concentrator is 2 Erlang.

6. Is the blocking probability non null? Why? What is the meaning of such result?

7. According to Lee method, which case is with the lower blocking probability? Does it
correspond to the case with higher or lower complexity?

FFF

Exercise 59
Design an 8× 8 Benes network.

1. Draw the complete network.

2. Which algorithms can be used to configure the network?

3. Connect: 1-5, 3-2, 4-3, 5-4, 8-1.

4. Compute the blocking probability according to the Lee method, Pb(ρ), as function of ρ,
the average single-input load. (question out of scope for the program 2021/22)

5. What is the meaning of Pb(ρ) > 0 for this network? (question out of scope for the program
2021/22)

6. In the case ρ = k
8 , for k = 0, . . . , 8, what is the meaning of Pb(k)? (question out of scope

for the program 2021/22)

Solution: The algorithm to configure is either the looping algorithm or the Paull’s algorithm,
both applied recursively in the network. Looping algorithm, derived from Paull’s algorithm, is
based on the full knowledge of all the input-output connections before the switching network
is configured. On the contrary, Paull algorithm is incremental and adds just one input-output
connection at the time, and rearranges the network when needed.

Fig. 1.45 reports the pi-graph for the Benes network, with all the reduction steps. The
loads for the edges are the following: a = ρ, b = 1 − (1 − ρ)2, c = b2 = (1 − (1 − ρ)2)2,
d = 1− (1− ρ)2[1− (1− (1− ρ)2)2] and finally Pb(ρ) = d2:

Pb(ρ) =
(
1− (1− ρ)2[1− (1− (1− ρ)2)2]

)2
This Pb(ρ) represents the approximated probability that the network is rearranged in the case
a new connection is added, with ρ the probability of busy for a single port. When ρ = k/N ,
on average there are k active inputs and Pb(k) represents the approximated probability that
a network with already k connections is rearranged when a new connection between an idle
input and idle output is setup. Note that this probability refers only to Paull’s algorithm, which
is incremental.

45

a

a

a

a a

a

a

a
a

aa

a

b

b

b

b

a

a

a

a

c

c

a

a

a

a

d

d

Figure 1.45: Pi-graphs for the Benes network after each reduction.

1.7 Space-time switching

Exercise 60 (out of scope for the program 2021/22)
Design a space-time switch with 3 ports, each of them receiving an E1 frame (32 slots of one
byte each, every 125 µs). Plot the STS network and transform it into an SSS network.

FFF

Exercise 61 (out of scope for the program 2021/22)
Consider a space-time switch, in two possible configurations: ST (space-time) and TS (time-
space). Which configuration has lower blocking probability? Why?

Solution:
P (blockingTS) < P (blockingST)

See the class notes. The TS switch allows to rearrange the slots and reduce the blocking.

FFF

Exercise 62 (out of scope for the program 2021/22)
1. Draw a TST network, with N ports and supporting frames of k timeslots.

2. Show the equivalent completely spatial network.

3. What is the meaning of such equivalence?

FFF

Exercise 63 (out of scope for the program 2021/22)
Consider a 6 × 6 Time-Space-Time (TST) switch for digital telephony. Incoming frames com-
prise 4 timeslots.

1. Describe the algorithm to configure the timeslot interchangers and the space switch,
given a switching configuration to obtain.

2. Is the TST switch blocking? Why?

3. Use the Lee method to estimate the blocking probability.

Solution: The TST switch is equivalent to a SSS which is a Clos network, with first/third stage
modules 4 × 4 and second stage modules 6 × 6; this network is non-blocking and can be
configured through Paull algorithm.

When, in the first/third stage module at input/output k of the Clos network, input i connects
output j, in the corresponding TSI at input/output k the data from timeslot i is moved to timeslot
j. When in the second stage module k of the Clos network input i connects to output j, the
corresponding spatial switch of STS moves the data from input i to output j during timeslot k.

46

FFF

Exercise 64 (out of scope for the program 2021/22)
Consider a 4× 4 STS switch built with k TSI and fed by traffic organized in frames of 2 slots.

1. Draw the STS switch

2. Draw the equivalent SSS switch

3. Compute the blocking probability of the switch for different values of k. Describe the
assumptions made.

47

Chapter 2

Data centers

2.1 Cloud computing

Exercise 65
Answer to the following questions related to cloud computing and data centers.

1. What is cloud computing according to NIST definition?

2. For each cloud computing service model, define it and provide an example.

3. What is the concept of resource virtualization?

4. List the resources that are typically virtualized, and explain what practically mean that
they are virtualized.

5. Describe the traffic within a data center, specifying the end-points and providing some
example.

FFF

Exercise 66
Answer to the following questions related to cloud computing and data centers.

1. What are the key aspects of cloud computing, according to the NIST definition?

2. Define each cloud computing service model and provide at least two examples.

3. What does it mean that the cpu is virtualized in a data center?

4. What does it mean that the memory is virtualized in a data center?

5. What does it mean that the storage is virtualized in a data center?

6. What does it mean that the network is virtualized in a data center?

7. Describe the traffic within a data center, specifying the end-points and providing some
examples.

8. What is the purpose of BGP within a data center?

48

2.2 Design of data center networks

Exercise 67
Consider the design of a data center.

1. What are the main advantages and disadvantages of managing the addressing at level 2
and at level 3?

2. Explain the difference between End-of-Row (EOR) and Top-of-Rack (TOR) architectures,
highlighting the corresponding advantages and disadvantages.

3. What is the purpose of the technology denoted as “multi-chassing link aggregation”?

4. What is the difference between overlay and underlay in a data center?

5. What is the motivation to use an overlay in a data center?

6. What is the role of BGP in a data center?

FFF

Exercise 68
Consider a data center built with the switches in the table. All the servers are equipped with
ports at 10 Gbps.

Switch model Ports
Top-of-Rack 40 @ 10 Gbps plus 4 @ 40 Gbps

Spine 8 @ 40 Gbps

1. Draw the largest leaf-and-spine data center with the above switches

2. Compute the corresponding number of servers, ToR switches and spine switches

3. Compute the corresponding oversubscription ratio

4. Assume eBGP used for routing: show a feasible AS number association for each switch

5. Assume iBGP used for routing: show a feasible AS number association for each switch

Solution:

• 8 ToR + 4 spines. 320 servers.

• oversubscription ratio 40× 10/(40× 4) = 2.5

• for eBGP, each switch is seen as an AS. Now AS number 101,102,. . . , 108 for the ToR
switches and 201, 202, 203, 204 for the spine switches.

• for iBGP, one AS is shared across all the switches. Just use AS number 101 for all the
switches.

FFF

Exercise 69
Consider the design of a data center.

1. Draw the standard topology used to interconnect the servers and the switches, distributed
across many racks. Highlight the role of the ToR (Top-of-Rack) switches.

49

2. What is a POD? How does affect the interconnection topology?

Consider the specific scenario in which (i) 1024 servers are interconnected; (ii) each rack is
equipped with at most 32 servers; (iii) the following switches are available, where x is some
given price:

Model Number of ports Port rate Cost (e)
M1 32 1 Gbit/s 0.7x
M2 64 1 Gbit/s 1.0x
M3 128 1 Gbit/s 1.5x

1. Design the whole interconnection network to implement the given scenario at the mini-
mum cost.

2. Evaluate the final cost.

Solution:
In the first part of the problem it was required to describe the leaf-and-spine topology,

highlighting the roles of the racks , of ToR switches and of PODs.
Let CTOT be the total cost. Let Cy p be cost of a switch with y ports. Three possible design

solutions must be considered:

• leaf: 64p, spine: 32p.

C ′TOT = 32C64p + 32C32p = 32x+ 32 · 0.7x

• leaf: 64p, spine: 64p.

C ′′TOT = 32C64p + 16C64p = 32x+ 16x = 48x

• leaf: 64p, spine: 128p.

C ′′′TOT = 32C64p + 8C128p = 32x+ 8 · 1.5x = 44x

Since C ′TOT > C ′′TOT > C ′′′TOT , the third solution is the cheapest one.

FFF

Exercise 70
Consider the design of a data center based on a leaf-spine topology.

• Describe the correspondence between the topology and a Clos network, highlighting
similarities and differences.

Assume now a total number of servers equal to 32,000 with each server interface running at
1 Gbit/s. Each rack can host 32 servers and racks are grouped into pods. Each switch is
equipped with 64 ports running at 1 Gbit/s.

• Design the interconnection topology.

• Compute the total number of switches and cables required to build the data center.

• How many pods result from the design?

• Which routing protocols can be used to find the path between two servers? Motivate your
answer.

50

FFF

Solution:
The complete solution is not reported.
To design a data center with 32,768 servers, there are needed 2,560 switches with 64 ports

and 66,560 cables. The total number of pods is 32.

FFF

Exercise 71
Consider the design of a large data center based only on Ethernet switches with P ports.

1. Describe the advantages and disadvantages to adopt a layer-2 addressing and routing
scheme.

2. Describe the advantages and disadvantages to adopt a layer-3 addressing and routing
scheme.

3. For each of the following design problems, draw at the high-level the network, compute
the required number of P -port switches and the maximum number of supported servers,

(a) Design the largest possible two level (leaf-and-spine) data center.

(b) Design the largest possible two level (leaf-and-spine) POD.

(c) Design the largest possible three level (POD-and-spine) data center.

4. Consider a data center with 400 servers each of them equipped with one port at 1 Gbps.
Each rack hosts 40 servers. All the adopted switches have P = 80 ports running at
1 Gbps each.

(a) Draw the network.

(b) Compute the number of required 80-port switches.

Solution:
3.(a) The design uses P switches in the leaf level and P/2 switches in the spine level. Thus,

the number of servers is P 2/2 and the number of switches is 1.5× P .
3.(b) The design uses P/2 switches in the leaf level of the POD and P/2 switches in the

spine level of the POD. Thus, the total number of server ports is P 4/4, the number of ports to
the spine is P 2/4, and the number of switches is P .

3.(c) The design uses P PODs in the leaf level and P 2/4 switches in the spine. Thus, the
total number of servers is P 3/4 and the number of switches is (5/4)× P 2.

4.(a) The leaf level is based on 10 switches whereas the spine level is based on 5 switches.
The interconnection is full between the leaf and spine levels, with a parallelism of 8 Gbps.

4.(b) The total number of switches is 15.

FFF

Exercise 72
Consider the design of a massively large data center based only on Ethernet switches, as-
suming an oversubscription ratio 4 : 1 between server capacity and network capacity. All the
adopted switches are equipped with 50 ports running at 1 Gbps. Each server is equipped with
one port running at 1 Gbps.

1. For each of the following design problems, draw at high-level the network, compute the
required number of switches and the maximum number of supported servers:

51

(a) Design the largest possible 2-levels (leaf-and-spine) data center.

(b) Design the largest possible 2-levels (leaf-and-spine) POD.

(c) Design the largest possible 3-levels (POD-and-spine) data center.

(d) Design the largest possible 3-levels (POD-and-spine) POD.

(e) Design the largest possible 4-levels (POD-and-spine) data center.

2. Discuss how this design is similar to Google’s Jupiter data centers.

3. Describe the advantages and disadvantages to adopt a layer-2 addressing and routing
scheme if adopted for the above 4-levels data center.

Solution:
Regarding question 1, see Table 2.1.

Network Servers Spine ports Switches Layout

2-levels data center 40× 50 = 2, 000 - 50 + 10 = 60

40 10 50

1050

2-levels POD 40× 25 = 1, 000 25× 10 = 250 10 + 25 = 35

40 10

10

25 25

25

3-levels data center 1000× 50 = 50, 000 - 50× 35 + 250 = 2, 000

1000 250 50

25050

3-levels POD 1000× 25 = 25, 000 25× 250 = 6, 250 25× 35 + 250 = 1, 125

1000 250 25

25 250

25

4-levels data center 25, 000× 50 = 1, 250, 000 - 50× 1, 125 + 6250 = 62, 500

25000 6250 50

50 6250

Table 2.1: Solution for question 1 of Ex. 72

FFF

Exercise 73
Consider the design of a data center based on switches that can configured as follows:

• C1: 2 ports at 10 Gbps and 40 ports at 1 Gbps

• C2: 6 ports at 10 Gbps

The design assumes an oversubscription ratio 2 : 1 between server capacity and network
capacity. Each server is equipped with one port at 1 Gbps.

52

1. For each of the following design problems, draw at high-level the network, compute the
required number of switches configured as C1 and configured as C2, and the maximum
number of supported servers:

(a) Design the largest possible 2-levels (leaf-and-spine) data center.

(b) Design the largest possible 2-levels (leaf-and-spine) POD.

(c) Design the largest possible 3-levels (POD-and-spine) data center.

2. Describe the advantages and disadvantages to adopt a layer-2 addressing and routing
scheme if adopted for the above POD-and-spine data center.

Solution:
As partial solution, the design of the requested data centers is described in the following

table.

Design Servers C1 switches C2 switches
2-layers data center 240 6 2
2-layers POD 120 3 2
3-layers data center 720 18 18

Note that 6 PODs are integrated for the last design.

FFF

Exercise 74
Consider the design of a data center based on a leaf-spine topology, with an oversubscription
3:1, connecting 24,576 servers with each server interface running at 10 Gbit/s. Each switch is
equipped with 64 ports running at 10 Gbit/s.

1. Design the interconnection topology, showing all the steps in the design construction.

2. Compute the total number of switches and cables required to build the data center.

Solution: The largest pod that can designed connects 1536 servers to 512 spine switches and
it is built with 32 + 16 = 48 switches. To connects all the servers, 24576/1536 = 16 pods are
necessary. Now the total number of leave switches connecting the pods is 128, with 4 parallel
links connected to each pod.

Thus, the total number of switches is 16× 48 + 128 = 896. The total number of cables is

24576 + 16× 32× 16 + 512× 16 = 24576× (1 + 2/3) = 40960

FFF

Exercise 75
Consider the design of a data center based on a leaf-spine topology, with an oversubscription
equal to 2:1, with each server interface running at 10 Gbit/s. Each switch is equipped with 60
ports running at 10 Gbit/s.

1. Design the largest possible two level (leaf-and-spine) data center.

2. Design the largest possible two level (leaf-and-spine) POD and connect 6 of them to build
the largest 3 levels data center.

For each of the two data centers, show the interconnection topology and compute (i) the total
number of supported servers, (ii) the total number of switches, (iii) the total number of required
cables (including the ones required to connect the servers).

53

Solution:
Data center Number of servers Number of switches Number of cables

2 layers 40× 60 = 2400 60 + 20 = 80 2400 + 20× 60 = 3600
3 layers 1200× 6 = 7200 (30 + 20)× 6 + 60 = 360 7200 + (30× 20× 6) + 3600 = 14400

FFF

Exercise 76
Design of a data center, with an oversubscription equal to 4:1, built only with switches with 100
ports.

1. Design the largest possible two layers data center (i.e., leaf-spine).

2. Design the largest possible three layers data center.

For each of the two data centers, show the interconnection topology and compute (i) the total
number of supported servers, (ii) the total number of switches, (iii) the total number of required
cables (including the ones required to connect the servers).

Solution:

Topology Servers Switches Cables
2 layer data center 80× 100 = 8000 100 + 20 = 120 8000 + 20× 100 = 10000

2 layer POD 80× 50 = 4000 50 + 20 = 70 4000 + 20× 50 = 5000
3 layer data center 4000× 100 = 400000 70× 100 + 1000 = 8000 100× 5000 + 1000× 100 = 600000

FFF

Exercise 77
Consider the design of Jupiter data center at Google, based on a basic building block imple-
mented with a chipset with 16 ports at 40 Gbps. The adopted oversubscription ratio is 3:1.
Each server is equipped with a single port running at 10 Gbps. Draw the architecture and
compute the total number of servers and basic building blocks (i.e., chipsets) for each of the
following scenarios:

1. 2-layers topology;

2. 2-layers POD;

3. 3-layers topology;

4. 3-layers POD;

5. 4-layers topology.

Finally, describe for the 4-layers topology all the possible ways to interconnect the data center
to the Internet.

Solution: See the class notes on Jupiter data center.

FFF

Exercise 78
Consider the topology of a data center with 2 layers, built only with switches with 50 ports
running at 1 Gbps, interconnecting 800 blade servers, each with a single port at 1 Gbps. The
adopted oversubscription ratio is 4:1. The rack is a standard 19-inch one. Assume that the
average total traffic generated at each server interface is λ Gbps, with λ ∈ [0, 1].

54

1. Design the overall interconnection network connecting the servers.

2. Compute the required number of switches and racks.

3. Draw the corresponding Clos network

4. Apply the Lee method to evaluate the blocking probability on the Clos network in function
of λ. (question out of scope for the program 2021/22)

5. How it is possible to interpret the blocking probability for the original data center scenario?
Under which assumptions? (question out of scope for the program 2021/22)

Solution:

1. The topology is shown in figure.

2. Let Sx be a switch with x ports. The total number of switches is:

20S50 + 10S20 = 20S50 + 5S50 = 25S50

The required number of racks is 20 for the leaf layer and 1 for the spine layer, thus a total
of 21 racks are needed.

3. The Clos network is shown in the figure:

4. To apply the Lee method, the pi-graph is shown below:

Let ρ be the normalized load on a link defined as:

ρ =
λ[Gbps]
1[Gbps]

Now:
a = b =

800ρ

10× 20
= 4ρ

Note that it must ρ ≤ 0.25 to ensure admissible traffic. The first reduction is shown below:

55

where
c = 1− (1− a)(1− b) = 1− (1− 4ρ)2 = 8ρ− 16ρ2

The second reduction is shown below:

where
d = c10 = (8ρ− 16ρ2)10

In summary, the total blocking probability for the Clos network is:

Pb = (8ρ− 16ρ2)10

with ρ ≤ 0.25 (i.e., λ ≤ 250 Mbps).

5. The block event in the Clos network corresponds to the event that all the paths from
an idle input to an idle output are busy. Thus, in the data center network, this event
corresponds to fact that all paths from an idle ToR switch to another idle ToR switch
are “busy”, i.e. congested by other traffic flows. Thus, Pb can be seen as the level of
congestion in the data center. And (1−Pb) can be seen as the probability that a new flow
from an idle ToR switch to another idle ToR switch will experience very small latency, due
to the lack of congested links along the path.

The Lee method is an approximated method and implies strong assumption on the data
center system, limiting its applicability: (1) the traffic is uniformly distributed between any
pair of ToR switches, (2) each server is source/destination of at most one traffic flow, (3)
the routing algorithm distributes randomly the traffic across the topology and all the paths
between two ToR traverse always the spine layer, (4) the congestion state among links is
independent for all the data center links.

FFF

Exercise 79
Consider the design of a massively large data center based only on Ethernet switches, as-
suming an oversubscription ratio 3 : 1 between server capacity and network capacity. All the
adopted switches are equipped with 40 ports running at 10 Gbps. Each server is equipped with
one port running at 10 Gbps.

1. For each of the following design problems, draw at high-level the network, compute the
required number of switches and the maximum number of supported servers:

(a) Design the largest possible 2-levels (leaf-and-spine) data center.

(b) Design the largest possible 2-levels (leaf-and-spine) POD.

(c) Design the largest possible 3-levels (POD-and-spine) data center.

56

(d) Design the largest possible 3-levels (POD-and-spine) POD.

(e) Design the largest possible 4-levels (POD-and-spine) data center.

2. Based on above results, design a data center connecting 120,000 servers.

3. As summary, fill the following:

Network Max num. servers Num. spine ports Tot. num. switches
2-levels data center
2-levels POD
3-levels data center
3-levels POD
4-levels data center

- 120, 000

4. Discuss how this design is similar to Google’s Jupiter data centers.

Solution:
Regarding question 3:
Network Max num. servers Num. spine ports Tot. num. switches
2-levels data center 30× 40 = 1, 200 - 40 + 10 = 50
2-levels POD 30× 20 = 600 20× 10 = 200 20 + 10 = 30
3-levels data center 600× 40 = 24, 000 - 40× 30 + 200 = 1, 400
3-levels POD 600× 20 = 12, 000 20× 200 = 4, 000 20× 30 + 200 = 800
4-levels data center 12, 000× 40 = 480, 000 - 40× 800 + 4, 000 = 36, 000

- 12, 000× 10 = 120, 000 - 10× 800 + 1, 000 = 9, 000
The last case is obtained by exploiting the 4-levels data center and aggregating 4 spine

switches (with 30 unused ports each) into a single one.

FFF

Exercise 80
Consider a modular data center interconnection based on a leaf-and-spine topology, built using
switches with 128 ports running at 1 Gbit/s.

1. Design a data center connecting 2048 servers.

(a) describe the equivalent Clos network adopted for the design (question out of scope
for the program 2021/22)

(b) describe the final topology

(c) compute the total number of switches

2. Extend the above design to implement a POD with 2,048 server ports and 2,048 switch
ports (i.e., used to connect to the spine)

(a) describe the final topology

(b) compute the total number of switches

3. Connect 8 PODs with the above architecture to design a data center with 16,384 servers

(a) describe the equivalent Clos network adopted for the design (question out of scope
for the program 2021/22)

(b) describe the final topology

(c) compute the total number of switches

57

4. Answer to the following questions:

(a) Define the cloud computing services that can run in a data center
(b) What is a POD?

Solution:
For simplicity, we do not report the drawing for the corresponding Clos networks.

1. The data center with 2,048 servers can be built considering a rearrangeable Clos network
with 2,048 ports and 64 ports at the first/third stage module. Thus, it requires 32 switches
with 128 ports (leaf layer) and 64 switches with 32 ports (spine layer). Note now that a
group of 4 switches with 32 ports in the leaf layer is built with one switch with 128 ports.
Thus, the final number of switches with 128 ports is 32 + 64/4 = 48.

1 1

32

128p 32p

64

1 1

32

128p 128p

16

4

2. To build a POD, the number of switches of the original leaf layer (in left topology of the
above figure) does not change but now each switch in the POD spine must have 64 ports
to connect to the new spine layer interconnecting the PODs. Thus, the total number of
switches with 128 ports in the POD spine is 64/2 = 32. The complete POD can be built
with 32 + 32 = 64 switches with 128 ports.

1 1

32

128p 64p

64

1 1

32

128p 128p

32

4

3. Finally, the data center with 16,384 servers can be built considering a rearrangeable Clos
network with 16,384 ports and 2,048 ports at the first/third stage module. Thus, it requires
8 PODs with 4,096 ports and, for the new spine, 2048 switches with 8 ports. Note that a
group of 16 switches with 8 ports is implemented with one switch with 128 ports. Thus,
the final number of switches with 128 ports in the spine is 128. In the complete data
center, the total number of switches with 128 ports is 8× 64 + 128 = 640.

1 1

32

128p 128p

32

1 1

32

128p 128p

32

8p

1

2048

1 1

32

128p 128p

32

1 1

32

128p 128p

32

128p

1

128

1

8

1

8

16

58

FFF

Exercise 81
Consider a modular data center interconnection based on a leaf-and-spine topology, built using
switches with 128 ports running at 1 Gbit/s. Assume that each rack is able to host either 64
physical servers and one switch with 128 ports, or 32 switches alone.

Design a massively large data center with 262144 = 218 physical servers.

1. Show the topology of the equivalent Clos network at each level of factorization (question
out of scope for the program 2021/22)

2. Show the topology interconnecting the 128 port switches

3. How many switches and racks are needed in total?

Solution: Let Cy be a unidirectional switch of size y×y. Let Cyp be a switch with y bidirectional
ports. Two possible strategies for the design can be followed.

Approach 1. As preliminary step, we can design a 4096× 4096 Clos network (since 4096 =
(128/2)2) as follows:

C4096 = 2× 64C64 + 64C64

Then we can design a 262144× 262144 Clos network based on the above network as follows:

C262144 = 64× 2C4096 + 4096C64

Now we can use the above Clos topology to build the data center with 128 port switches. A
pod with 8192 ports can be built with

C8192p = 64C128p + 64C128p = 128C128p

requiring 64 racks (for servers and ToR switches) and 2 racks (for spine switches), thus in total
66 racks. Thus, the final data center can be built with

C262144p = 64C8192p + 4096C64p = 64× 128C128 + (4096/2)C128p

= 8192 + 2048C128p = 10240C128p

requiring 64 × 66 racks for the pods and 2048/32 = 64 racks for the spine, thus in total 4288
racks.

Approach 2. We design a 262144× 262144 Clos network as follows:

C262144 = 2× 4096C64 + 64C4096

in which we have:
C4096 = 2× 64C64 + 64C64

Now we can use the above Clos topology to devise the overall data center:

C262144p = 4096C128p + 64C4096p

which requires 4096 racks (for servers and ToR switches) and some additional ones to host
the pods. Now each 4096 port pod can be built as

C4096p = 64C128p + 64C64p = (64 + 32)C128p = 96C128p

which requires 96/32 = 3 racks. Thus, the overall number of 128 port switches is 4096 + 64 ×
96 = 10240 (as in approach 1) and the overall number of racks is 4096 + 64 × 3 = 4288 (as in
approach 1).

59

Chapter 3

Packet switches

3.1 Theoretical performance

3.1.1 Bufferless switches
Exercise 82 (out of scope for the program 2021/22)
Consider a generic N × N switch, without buffers, with synchronous operation: at most one
packet is transferred for each timeslot from each input and to each output. The traffic is uniform
and p is the arrival probability of a packet at an input during one timeslot. When many packets
arrive destined for the same output, just one of them is transferred to the output whereas the
others are lost.

• What is the average number of lost packets for each timeslot?

• Compute the average number of lost packets in the case N = 8, 16, 256 e p = 0.1, 0.5, 1.0.

• When the packets arrive at 1 Gbps, compute the maximum speed at which packets leave
from each port, in the cases N = 8, 16, 256.

• Compute the limiting throughput when N →∞.

Solution: Let X be a random variable equal to the number of packets arrived and destined
to output U . An input link does not send any packet with probability 1 − p, sends a packet to
U with probability p/N and sends to another output with probability (N − 1)p/N . Hence the
probability that, given N inputs, there exist x packets destined to U is the following:

P (X = x) =

(
N

x

)(p
N

)x (
1− p

N

)N−x
for x = 0, . . . , N . If X = 0, no packet loss occurs. If X ≥ 1, then X − 1 packets are lost,
since only one packet is served. Hence, if Y is the number of lost packet directed to U , with
Y = max(0, X − 1), then the average number of lost packets are:

E[Y] =

N∑
x=2

(x− 1)

(
N

x

)(p
N

)x (
1− p

N

)N−x
obtained by considering only when the number of lost packets is between 1 and N − 1. E[Y]
can be computed by recalling that for the binomial distribution, with parameters (q,N) and
0 ≤ q ≤ 1, it holds:

N∑
x=0

(
N

x

)
qx(1− q)N−x = 1

N∑
x=0

x

(
N

x

)
qx(1− q)N−x = Nq

60

N p=0.1 p=0.5 p=1.0
8 0.034 0.77 2.74
16 0.073 1.63 5.70
256 1.24 27.2 94.0

Table 3.1: Average number of lost cells NE[Y] (ex. 82)

N Max throughput Max port speed
8 0.656 656 Mbit/s
16 0.644 644 Mbit/s
256 0.633 633 Mbit/s
∞ 0.632 632 Mbit/s

Table 3.2: Maximum throughput for 1Gbps ports switch (ex. 82)

Now:

E[Y] = N
p

N
−
(
N

1

)(p
N

)(
1− p

N

)N−1
− 1+((

1− p

N

)N
+N

(p
N

)(
1− p

N

)N−1)
=
(

1− p

N

)N
− (1− p)

The average total number of cells lost in the switch is given by:

NE[Y] = N

((
1− p

N

)N
− (1− p)

)
which is shown in Table 3.1 and, for N →∞, goes to N [e−p − (1− p)].

The single port throughput is equal to the probability that an output is served P (X ≥ 1):

P (X ≥ 1) = 1− P (X = 0) = 1−
(

1− p

N

)N
which is shown in Table 3.2. The limiting throughput for each single port is:

lim
N→∞

1−
(

1− p

N

)N
= 1− e−p = 1− e−1 = 63%

where p has been set equal to 1 to compute the limiting throughput.

FFF

Exercise 83 (out of scope for the program 2021/22)
Consider a bufferless switch. Show analytically that the maximum achievable throughput is
around 63%, specifying in details all the assumptions to get such a result.

Why the throughput is larger than the throughput achievable in an input queued switch with
a single queue per input?

Solution: See solution of Ex. 82.

FFF

Exercise 84 (out of scope for the program 2021/22)
Consider a slotted bufferless switch of size N × M , with any N and M , comprising all the
possible three cases: N = M , N > M and N < M . When an output contention occurs
among different packets, one packet at random is transferred across the switch. Assume that
the arrival process is Bernoulli i.i.d. being ρ ∈ [0, 1] the normalized average load at an input.
The traffic is uniformly distributed across all the inputs and outputs.

61

1. Compute the admissibility conditions for ρ

2. Compute the throughput achievable in function of ρ, describing in details all the steps in
the derivation.

3. Assume α = N/M fixed and N → ∞. What is the maximum throughput achievable? If
needed, recall that

lim
x→∞

(
1 +

a

x

)x
= ea

Solution:

1. For M < N , it should be ρ < M/N , and for M ≥ N it should be ρ ≤ 1.

2. Observe that ρ/M is the probability that an output receives a packet during a generic
timeslot. Let X be the number of packets arrived for a specific output.

P (X = 0) =
(

1− ρ

M

)N
The throughput T can be computed as

T = P (X ≥ 1) = 1− P (X = 0) = 1−
(

1− ρ

M

)N
3. If N = αM

T = 1−
(

1− ρ

M

)αM
→ 1− e−ρα

If N < M (i.e. α < 1), the maximum admissible load is ρ = 1 and T → 1− e−α. If N ≥M
(i.e. α ≥ 1), the maximum admissible load is ρ = 1/α and T → 1− e−1 ≈ 0.63.

FFF

Exercise 85 (out of scope for the program 2021/22)
Consider a 4× 4, bufferless switch, fed by non-uniform Bernoulli i.i.d. arrivals according to the
following rate matrix:

Λ = ρ


1/3 1/3 1/6 1/6
1/3 1/3 1/6 1/6
1/3 1/3 1/6 1/6
0 0 0 0


where ρ is the normalized load at each input. Assume that contentions among packets directed
to the same output are solved at random. Compute analytically

1. the traffic admissibility conditions;

2. the throughput measured for each output port in function of ρ;

3. the maximum throughput achievable under admissible traffic.

Solution:
The admissibility conditions are ρ ≤ 1.
Consider a generic timeslot. Let X1 be the number of cells arrived and directed to output 1

and 2 and let X2 be the number of cells arrived and directed to output 3 and 4.

P (X1 = 0) =
(

1− ρ

3

)3
P (X2 = 0) =

(
1− ρ

6

)3

62

Now the throughput for outputs 1 and 2 is:

T1(ρ) = P (X1 ≥ 1) = 1− P (X1 = 0) = 1−
(

1− ρ

3

)3
and for outputs 3 and 4:

T2(ρ) = P (X2 ≥ 1) = 1− P (X2 = 0) = 1−
(

1− ρ

6

)3
The maximum throughput is achieved for ρ = 1:

T1(1) = 1− (1− 1/3)3 ≈ 0.70 T2(1) = 1− (1− 1/6)3 ≈ 0.42

FFF

Exercise 86 (out of scope for the program 2021/22)
Consider a bufferless switch of size N ×M , running on a slotted fashion. At each timeslot, a
broadcast packet (i.e., directed to all the M outputs) arrives at each input with probability p.

1. compute the throughput in function of p

2. compute the admissibility condition for p

3. compute the maximum throughput under admissible traffic

Solution:

1. (1− (1− p)N)

2. p ≤ 1/N

3. 1− e−1 ≈ 0.63

FFF

Exercise 87 (out of scope for the program 2021/22)
Consider a generic bufferless N ×M switch with synchronous operation: at most one cell is
transferred for each timeslot from each input and to each output. The traffic is multicast and
uniformly distributed among all inputs and the fanout set is uniformly distributed among all the
outputs. Fanout splitting is allowed, i.e. a cell can be transferred in one timeslot to a subset of
its destinations.

Let ρ be the arrival probability of a cell at each input during one timeslot. Given a multicast
cell, let q be the probability that the cell is directed to a specific output.

1. What is the distribution of the fanout (i.e. the number of destinations) of a generic cell?

2. What is the average fanout f of a cell?

3. What is the average offered load at each output?

4. Under which conditions the traffic is admissible?

Now fix the attention to a specific output.

1. What is the distribution of the number of cells directed to that specific output?

2. What is the average throughput as a function of ρ and f?

63

3. What is the maximum throughput under admissible traffic for finiteN andM? What about
taking the limits for N and M going to infinity?

Solution: Let X be the fanout of a generic cell

P (X = x) =

(
M

x

)
qx(1− q)M−x 0 ≤ x ≤M

Note that the model implies that, with probability (1− q)M , the packet fanout is null. In theory,
P (X = x) could be modified to avoid this case, but we have preferred to keep this case for the
sake of simpler theory. Now, the average fanout is f = E[X] = qM and the traffic is admissible
if

Nρf/M < 1 ⇒ Nρq < 1

Let Y be the number of cells directed for a specific output. Since ρq is the probability that an
input has a cell destined to a specific output:

P (Y = y) =

(
N

y

)
(ρq)y(1− ρq)N−y 0 ≤ y ≤ N

The probability that no cell is received for an output is:

P (Y = 0) = (1− ρq)N

The average throughput, seen at any output, is equal to the probability that an output is busy

T = P (Y > 0) = 1− P (Y = 0) = 1− (1− ρq)N = 1−
(

1− ρ f
M

)N
Note that the maximum throughput is achieved for ρ = 1/(qN):

Tmax = 1−
(

1− 1

N

)N
which goes to 1− e−1 ≈ 63%, independently of M , for N →∞.

3.1.2 Input queued switch with single FIFO

Exercise 88 (out of scope for the program 2021/22)
Consider a 2× 2 input queued switch, with one queue for each input, fed by uniform Bernoulli
i.i.d. traffic.

1. Find analytically the maximum achievable throughput. Define all the adopted notation.

2. Discuss qualitatively the delay performance in function of the average load.

Is it possible to devise another admissible traffic scenario for which the throughput is lower than
in the above case?

FFF

Exercise 89 (out of scope for the program 2021/22)
Consider an N × N input queued switch with a single FIFO queue per input port. Find an
admissible traffic pattern, with load ρ = 1, for which the maximum throughput is order of 1/N
and prove such result.

64

Solution: Let Ai(n) be the destination of the packet arrived at input i, with i ∈ [1, . . . , N], at
timeslot n. Fix k to a generic value. During the observation interval of Nk timeslots, the traffic
pattern is the following, for each input i:

• Ai(1) = . . . = Ai(k) = 1

• Ai(k + 1) = · · · = Ai(2k) = 2

• Ai(2k + 1) = · · · = Ai(3k) = 3

• . . .

• Ai((N − 1)k + 1), . . . , Ai(Nk) = N .

Let x(j) be the time when the last packet, destined for output j, is served. We assume a round
robin service at each output, in the case of contention for the same output; hence,

• x(1) = kN

• x(2) = x(1) + (kN − (N − 1))

• x(j) = x(j − 1) + (kN − (N − 1))

from which:
x(N) = x(1) + (kN − (N − 1))(N − 1) = kN2 − (N − 1)2

The timeslot when the last packet arrives for output N is kN . Assume that such packet is
arrived at input N . Then, the maximum throughput T achieved by input N is:

T =
kN served packets
x(N) timeslots

=
kN

kN2 − (N − 1)2

from which, if we want a throughput close to 1/N (thus, approaching 0 as N increases), we
can set:

T ≤ 1 + ε

N

and

k ≥ 1 + ε

ε

(
N − 1

N

)2

FFF

Exercise 90 (out of scope for the program 2021/22)
Consider a 2 × 2 input queued switch with just one single FIFO queue per each input fed by
Bernoulli i.i.d. arrivals with the following arrival matrix:

Λ =

[
p 1− p

1− p p

]
1. Show the Markov chain to compute the maximum throughput, after having properly de-

fined each state.

2. Write the formula to compute the maximum throughput in function of the stationary prob-
ability of each state.

3. What is the throughput for p→ 1?

4. What is the throughput for p→ 0?

65

5. What is the throughput for p = 0.5?

Solution:
The state of the Markov chain is (O1, O2) where Oi is the destination of the packet at the

head of the queue at input i. The Markov chain is the following:

The throughput can be evaluated as:

T =
1Π(1,1) + 1Π(2,2) + 2Π(1,2) + 2Π(2,1)

2

where two states have been aggregated into a single one.
Without solving the Markov chain, but just understanding the traffic fed to the switch, when

either p = 0 or p = 1 the throughput is always 100% (T = 1) since no conflict is present.
In the case of p = 0.5, the traffic is uniform and the throughput is T = 0.75.

FFF

Exercise 91 (out of scope for the program 2021/22)
Consider a 2 × 2 input queued switch with just one single FIFO queue per each input fed by
Bernoulli i.i.d. arrivals with the following arrival matrix:

Λ =

[
α 1− α

1− β β

]
1. Show the Markov chain to compute the maximum throughput, after having properly de-

fined each state.

2. Write the formula to compute the maximum throughput in function of the stationary prob-
ability of each state.

3. What is the throughput for α→ 1 and β → 1?

4. What is the throughput for α→ 0.5 and β → 0.5?

5. What is the throughput for α→ 0 and β → 0?

Solution: The state of the Markov chain is (O1, O2) where Oi is the destination of the packet
at the head of the queue at input i. The Markov chain is the following:

66

The the remaining of the exercise is as Ex. 90

FFF

Exercise 92 (out of scope for the program 2021/22)
Show how to prove the 58% throughput result for an input queued switch.

1. describe all the assumptions on the input traffic, the switch queueing structure, and the
scheduling algorithm

2. describe the ”derived” queueing model considered in the proof to obtain the final results

3. obtain the final result.

Recall that the average queue size E[X] of a discrete M/D/1 queue is:

E[X] =
E[A2] + E[A]− 2(E[A])2

2(1− E[A])

where A is a discrete random variable equal to the number of packet arrivals during the current
timeslot.

FFF

Exercise 93 (out of scope for the program 2021/22)
Consider a N ×N input queued switch with just one single FIFO queue per each input, fed by
admissible Bernoulli i.i.d. arrivals.

1. Explain in details the meaning of admissible Bernoulli i.i.d. arrivals.

2. Describe the performance in terms of average delay and throughput, under uniform traf-
fic. Draw the corresponding two performance curves: throughput vs load, delay vs load.

3. Describe a non-uniform traffic scenario in which the throughput is always maximum.
Draw the two performance curves, as above.

4. Describe a non-uniform traffic scenario (also non-Bernoulli) in which the throughput is
very small. Draw the two performance curves, as above.

3.1.3 Generic switches with input and/or output queueing

Exercise 94 (out of scope for the program 2021/22)
Consider a packet switch.

1. Define the work-conservation property.

2. Is an output queued switch work-conserving? Prove it formally.

3. Is an input queued switch work-conserving? Prove it formally.

4. Which performance index is mainly affected by the work-conservation property?

Solution:

1. A time-slotted packet switch is work-conserving if, for each timeslot, whenever at least
one packet arrives destined to an output, this output will be busy transmitting a packet
to the output interface. Thus, if a packet arrives and it is not transmitted at the output
interface, then this output is busy transmitting another packet.

67

2. An output queued switch is work-conserving by construction, since the speedup is suf-
ficient to transfer all the packets present at the inputs to the outputs. Hence, it cannot
happen that an output interface will be idling if at least one packet destined for it is avail-
able.

3. An input queued switch is not work-conserving. Consider, for example, the following
sequence of packets arriving to a 2× 2 switch, using the notation (input, output), with the
outputs denoted as A e B.

• t = 0: (1,A), (2,A), and only (2,A) is transmitted to output A;

• t = 1: (1,B); only one between (1,A) and (1,B) is transmitted to the output; thus,
one output interface will be busy, whereas the other will be idling even if a packet is
available and destined to it.

4. The work-conservation property affects mainly the average delay.

FFF

Exercise 95 (out of scope for the program 2021/22)
Consider a combined input output queued (CIOQ) switch, with speedup 2.

• Does it achieve 100% throughput? How? At which complexity?

• Does it achieve work conservation? How? At which complexity?

• Does it achieve perfect OQ emulation? How? At which complexity?

Solution: To achieve 100% throughput, any maximal size matching is sufficient; the complexity
is around O(N2). At the expenses of a larger complexity, LOOFA achieves work conservation.
With much higher complexity and an algorithm based on stable marriage problem, it is also
possible to achieve OQ emulation.

FFF

Exercise 96 (out of scope for the program 2021/22)
Consider a Combined Input Output Queued (CIOQ) switch.

1. Define the work-conservation property

2. Define the output-queued (OQ) emulation property

3. Describe the algorithm to obtain work-conservation for speedup 2

4. Describe the algorithm to obtain OQ emulation for speedup 4

FFF

Exercise 97 (out of scope for the program 2021/22)
Consider an 2 × 2 switch with a single queue for input, with speedup S. The offered load is
Bernoulli i.i.d., uniformly distributed among all the inputs and the outputs.

1. Compute the maximum achievable throughput for S = 1.

2. Compute the maximum achievable throughput for S = 2.

3. Draw, qualitatively, on the same graph the curves of the average delay in function of
offered load in the cases: S = 1 e S = 2.

68

Solution:

1. S = 1: 75% (see the class notes);

2. S = 2: 100% (equivalent to an OQ);

3. See the class notes.

FFF

Exercise 98 (out of scope for the program 2021/22)
Consider an input queued switch N ×M fed by multicast traffic.

1. Define the optimal queueing structure. How many queues are needed?

2. Describe a counterexample showing that the input queued switch achieves the maxi-
mum throughput lower that an output queued switch, in terms of maximum throughput,
regardless the adopted queueing structure.

FFF

Exercise 99 (out of scope for the program 2021/22)
Show how to compute the average delay for an output queued architecture, as function of λ,
the average single-input load (0 ≤ λ ≤ 1), under uniform i.i.d. Bernoulli traffic. Recall that the
average queue size E[X] of a discrete M/D/1 queue is:

E[X] =
E[A2] + E[A]− 2(E[A])2

2(1− E[A])

where A is a discrete random variable equal to the number of packet arrivals during the current
timeslot. Finally, draw the graph of the average delay as function of λ.

3.2 Packet Scheduling in Input Queued Switches

3.2.1 Scheduling algorithms for unicast traffic

Exercise 100 (out of scope for the program 2021/22)
Consider an input queued switch with Virtual Output Queueing fed by admissible Bernoulli i.i.d.
(ABIID) traffic. The adopted scheduler computes the maximum size matching at each timeslot.

1. Explain in details the meaning of “admissible” traffic

2. Explain in details the meaning “Bernoulli i.i.d.” traffic

3. Describe an ABIID traffic pattern under which the scheduler achieves 100% throughput

4. Describe an ABIID traffic pattern under which the scheduler does not achieve 100%
throughput and prove such property, by explaining all the required assumptions.

FFF

Exercise 101 (out of scope for the program 2021/22)
Consider a 4 × 4 input queued switch with VOQ. Report four examples, one for each below
listed case, of the queue occupancies such that:

1. the maximum size matching is different from the maximal size matching

69

2. the maximum weight matching is different from the maximal weight matching

3. the maximum size matching is different from the maximum weight matching

4. the maximal size matching is different from the maximal weight matching

Solution: Let R be the request matrix, corresponding to the VOQ occupancy. Let
MWM /mWM be the maximum/maximal weight matching, and MSM /mSM be the maxi-
mum/maximal size matching. Given a matching π, let π(i) be the output connected to input i;
if i is not connected, π(i) = − .

1. R =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

: πMSM = (1, 2, 3, 4), πmSM = (2,−, 3, 4).

2. R =


2 3 0 0
0 2 0 0
0 0 1 0
0 0 0 1

: πMWM = (1, 2, 3, 4), πmWM = (2,−, 3, 4).

3. R =


1 3 0 0
0 1 0 0
0 0 1 0
0 0 0 1

: πMSM = (1, 2, 3, 4), πMWM = (2,−, 3, 4).

4. R =


2 3 0 0
0 2 0 0
0 0 1 0
0 0 0 1

: πmSM = (1, 2, 3, 4), πmWM = (2,−, 3, 4).

FFF

Exercise 102
Describe in pseudo-code a scheduling algorithm for input queued switches, that is maximal
and approximates the maximum size matching.

Does it obtain always 100% throughput? Why? (question out of scope for the program
2021/22)

Solution:
The pseudocode is available in Fig. 3.1.
The algorithm does not obtain 100% throughput since it approximates an algorithm which

does not achieve it neither (see the counterexample in the class notes). Further, a maximal
algorithm is able to obtain 100% throughput only when the available speedup is 2.

FFF

Exercise 103
Describe in pseudo-code a scheduling algorithm for input queued switches, that is maximal
and approximates the maximum weight matching.

Does it obtain always 100% throughput? Why? Under which traffic scenarios it obtains the
maximum throughput? (questions out of scope for the program 2021/22)

Solution: The pseudocode is available in Fig. 3.2.
The algorithm does not obtain 100% throughput since a maximal algorithm is able to

achieve 100% throughput when the speedup is at least 2. It obtains 100% throughput under
uniform Bernoulli i.i.d. traffic.

70

1 void scheduler(int **X) { // X is matrix of size NUM_PORTS*NUM_PORTS
2 // X[in][out]=queue lenght for VOQ[in][out]
3 int in,out;
4 int matching[NUM_PORTS]; // matching[in]=out, otherwise -1
5 unsigned char out_reserved[NUM_PORTS]; // =TRUE, FALSE
6

7 // init matching and reservation vectors
8 for (in=0; in<NUM_PORTS; in++) {
9 matching[in]=-1;

10 out_reserved[in]=FALSE;
11 }
12 for (in=0; in<NUM_PORTS; in++) {
13 for (out=0; out<NUM_PORTS; out++) {
14 if (X[in][out]>0 && out_reserved[out]==FALSE) {
15 matching[in]=out;
16 out_reserved[out]=TRUE;
17 break;
18 }
19 }
20 }
21 // now matching contains the desired matching
22 }

Figure 3.1: Pseudocode for Ex. 102

1 void scheduler(int **X) { // X is matrix of size NUM_PORTS*NUM_PORTS
2 // X[in][out]=queue length for VOQ[in][out]
3 int in,out,out_where_max_len,max_len;
4 int matching[NUM_PORTS]; // matching[in]=out, otherwise -1
5 unsigned char out_reserved[NUM_PORTS]; // =TRUE, FALSE
6

7 // init matching and reservation vectors
8 for (in=0; in<NUM_PORTS; in++) {
9 matching[in]=-1;

10 out_reserved[in]=FALSE;
11 }
12 for (in=0; in<NUM_PORTS; in++) {
13 // find the maximum queue among unreserved outputs
14 max_len=0;
15 for (out=0; out<NUM_PORTS; out++) {
16 if (X[in][out]>max_len && out_reserved[out]==FALSE) {
17 max_len=X[in][out];
18 out_where_max_len=out;
19 }
20 }
21 // store the maximum queue
22 if (max_len>0) {
23 matching[in]=out_where_max_len;
24 out_reserved[out_where_max_len]=TRUE;
25 }
26 }
27 // now matching contains the desired matching
28 }

Figure 3.2: Pseudocode for Ex. 103

FFF

Exercise 104 (out of scope for the program 2021/22)
Consider an input queued switch, with Virtual Output Queueing and without speedup. The
scheduling algorithm must maximize, at any timeslot, the number of packets to transfer from
the inputs to the outputs.

1. Show an example of scheduling algorithm which can be used.

2. Is the switch work-conserving? Why? Prove it, if possible.

71

3. Does the switch obtain always 100% throughput? Why? Prove it, if possible.

FFF

Exercise 105
Consider an input queued switch, with Virtual Output Queueing and without speedup.

1. Describe (better if in pseudo-code) any maximal scheduling algorithm that approximates
the maximum size matching.

2. How does it behave, in terms of throughput and delay, with respect to an output queued
switch? (question out of scope for the program 2021/22)

FFF

Exercise 106
Consider a N ×M input queued switch with Virtual Output Queueing and QoS support. For
a generic (input-i,output-j) pair there exist two queues: V OQHij for high priority traffic (e.g.
VoIP) and V OQLij for low priority traffic (e.g. web). An input traffic classifier sends the incoming
packets to the correct queue.

1. Write in pseudocode a greedy algorithm to schedule the transmissions across the switch-
ing fabric, to maximize the number of high priority packets that are selected at each
timeslot. Let H[i][j] be the occupancy of V OQHij and let L[i][j] be the occupancy of
V OQLij .

2. Discuss the scheduler performance in terms of throughput. (question out of scope for the
program 2021/22)

3. Is it possible that low priority traffic will be starved indefinitely by high priority traffic?
Motivate your answer with an example.

FFF

Exercise 107
Consider a N ×M input queued switch with Virtual Output Queueing and supporting Strict
Priority Queueing based on C classes. For each (input-i,output-j) pair there exist C queues:
[V OQcij]

C
c=1, with decreasing priority level, where c = 1 refers to the highest priority traffic and

c = C refers to the lowest priority traffic (i.e., best effort traffic). Therefore, C ×N ×M queues
are present in total. We assume that an input traffic classifier sends the incoming packets to
the correct queue.

1. Write in pseudocode a greedy algorithm to schedule the transmissions across the switch-
ing fabric, to be maximal and to maximize the number of higher priority packets that are
selected at each timeslot. Define all the data structures adopted in your code.

2. Does the scheduler obtain always the maximum throughput under admissible Bernoulli
i.i.d. traffic? Motivate your answer. (question out of scope for the program 2021/22)

3. Is it possible that low priority traffic will be starved indefinitely by high priority traffic?
Motivate your answer with an example.

FFF

72

Exercise 108
Consider a N ×M input queued switch with Virtual Output Queueing, running in a network
where each packet is tagged with the entrance time in the network (i.e. the packet is tagged at
the first switch traversed in the network with a timestamp corresponding to the current time).
Each VOQ is not FIFO, but stores the packets in increasing order of timestamp, such that the
head-of-line packet at each VOQ is the oldest in the network. Let V OQij be the queue corre-
sponding to input i and output j and letH[i][j] be its occupancy. Let Tij be the timestamp of the
head-of-line packet corresponding to V OQij , represented by an integer number corresponding
to the absolute time when the packet entered the network.

1. Write in pseudocode a greedy algorithm to schedule the transmissions across the switch-
ing fabric, to maximize the number of oldest packets that are selected at each timeslot.

2. Discuss the scheduler performance in terms of throughput. (question out of scope for the
program 2021/22)

3. Is it possible that a packet will be starved indefinitely in the switch? Motive your answer.

FFF

Exercise 109
Consider a N × M input queued switch with Virtual Output Queueing for data centers. To
minimize the flow completion time, the scheduler transfers at highest priority the packets cor-
responding to shortest flows. Let F [i][j] be the flow length of the head-of-the-line packet of the
VOQ from input i to output j.

1. Write in pseudocode a greedy algorithm to schedule the transmissions.

2. Define all the required data structures, providing a detailed description of their use and
meaning.

3. Can the packets of a specific flow starve forever? Motivate in details your answer.

FFF

Exercise 110
Describe in pseudo-code a scheduling algorithm for an A×B input queued switch, designed to
reduce the flow completion time in data centers. Such algorithm is maximal and gives higher
priority to the head-of-the-line (HoL) packets with less residual packets in the corresponding
flow. Let P [i][j] be the residual number of packets for the flow of the HoL packet at VOQ at
input i and destined to output j. Define all the required data structures.

Could be there any starvation problem for the flows? Why?

FFF

Exercise 111
Consider a Top-of-Rack switch with 42 ports, in which 4 ports (denoted as “gold” ports) are
adopted to connect to the spine switches and the remaining ports are devoted to the intercon-
nection of the servers within the rack. A QoS policy assures that all the traffic that is directed
to any gold port or is received by any gold port must be transferred at the highest priority with
respect to the remaining traffic.

Assume now that the traffic is only unicast and the switch is implemented through an input
queued architecture with Virtual Output Queueing. The scheduler is maximal and implements
a strict priority policy on the gold ports.

73

• Define and describe all the data structures required to define and solve the scheduling
problem.

• Describe in pseudocode the scheduling algorithm.

• Discuss the expected performance in terms of throughput and delays, under a generic
traffic pattern. (question out of scope for the program 2021/22)

Solution:

1 void scheduler(int **X, int NUM_PORTS, int NUM_GOLD_PORTS) {
2 // X is matrix of size NUM_PORTS*NUM_PORTS; X[in][out]=queue length for VOQ[in][out]
3 // gold ports are NUM_GOLD_PORTS and correspond to the first NUM_GOLD_PORTS ports
4

5 int in,out;
6 int matching[NUM_PORTS]; // matching[in]=out, otherwise -1
7 bool out_reserved[NUM_PORTS],in_reserved[NUM_PORTS]; // boolean reservation vectors
8

9 // init matching and reservation vectors
10 for (in=0; in<NUM_PORTS; in++) {
11 matching[in]=-1;
12 out_reserved[in]=in_reserved[in]=false;
13 }
14 // Step 1: match gold input ports to any output port
15 for (in=0; in<NUM_GOLD_PORTS; in++) {
16 for (out=0; out<NUM_PORTS; out++) {
17 if (out_reserved[out]) { // skip already reserved outputs
18 continue;
19 }
20 if (X[in][out]>0) {
21 // if the VOQ is non empty, store the matching and reserve the inputs/outputs
22 matching[in]=out; out_reserved[out]=in_reserved[in]=true;
23 break;
24 }
25 }
26 }
27 // Step 2: match gold output ports to any input port
28 for (out=0; out<NUM_GOLD_PORTS; out++) {
29 if (out_reserved[out]) { // skip already reserved outputs
30 continue;
31 }
32 for (in=0; in<IN_PORTS; in++) {
33 if (in_reserved[in]) { // skip already reserved inputs
34 continue;
35 }
36 if (X[in][out]>0) {
37 // if the VOQ is non empty, store the matching and reserve the inputs/outputs
38 matching[in]=out; out_reserved[out]=in_reserved[in]=true;
39 break;
40 }
41 }
42 }
43 // Step 3: match remaining ports
44 for (in=NUM_GOLD_PORTS; in<NUM_PORTS; in++) {
45 if (in_reserved[in]) { // skip already reserved inputs
46 continue;
47 }
48 for (out=NUM_GOLD_PORTS; out<NUM_PORTS; out++) {
49 if (out_reserved[out]) { // skip already reserved outputs
50 continue;
51 }
52 if (X[in][out]>0) {
53 // if the VOQ is non empty, store the matching and reserve the inputs/outputs
54 matching[in]=out; out_reserved[out]=in_reserved[in]=true;
55 break;
56 }
57 }
58 }
59 // now matching contains the desired matching
60 }

74

Another possibility for the pseudocode:

1 void scheduler(int **X, int NUM_PORTS, int NUM_GOLD_PORTS) {
2 // X is matrix of size NUM_PORTS*NUM_PORTS; X[in][out]=queue length for VOQ[in][out]
3 // gold ports are NUM_GOLD_PORTS and correspond to the first NUM_GOLD_PORTS ports
4

5 int in,out;
6 int matching[NUM_PORTS]; // matching[in]=out, otherwise -1
7 bool out_reserved[NUM_PORTS],in_reserved[NUM_PORTS]; // boolean reservation vectors
8

9 // init matching and reservation vectors
10 for (in=0; in<NUM_PORTS; in++) {
11 matching[in]=-1;
12 out_reserved[in]=in_reserved[in]=false;
13 }
14 // Step 1: match gold input or ports
15 for (in=0; in<NUM_PORTS; in++) {
16 for (out=0; out<NUM_PORTS; out++) {
17 // check if the input or the output port is a gold port
18 if (in<NUM_GOLD_PORTS OR out<NUM_GOLD_PORTS) {
19 // check if the VOQ is not empty the the output is available
20 if (X[in][out]>0 AND !out_reserved[out]) {
21 // store the matching and reserve both the inputs and outputs
22 matching[in]=out; out_reserved[out]=in_reserved[in]=true;
23 break; // consider a new input
24 }
25 }
26 }
27 // Step 2: match all the remaining ports
28 for (in=0; in<NUM_PORTS; in++) {
29 if (in_reserved[in]) { // skip already reserved input
30 continue;
31 }
32 for (out=0; out<NUM_PORTS; out++) {
33 // check if the VOQ is not empty the output is available
34 if (X[in][out]>0 AND !out_reserved[out]) {
35 // store the matching and reserve both the inputs and outputs
36 matching[in]=out; out_reserved[out]=in_reserved[in]=true;
37 break; // consider a new input
38 }
39 }
40 }
41 // now matching contains the desired matching
42 }

FFF

Exercise 112 (out of scope for the program 2021/22)
Consider two scheduling algorithms S1 and S2, for an N × N input queued switch, achieving
100% throughput. Let S1 compute a maximal weight matching. Let S2 exploit memory from
past matchings.

1. Describe in pseudo-code the algorithms S1 and S2, assuming that it is already available
a function, returning a random matching, declared as follows:

int *create_random_matching(void)

2. Describe the sufficient conditions for S1 and S2 to obtain 100% throughput.

3. Compute the approximated computational complexity for S1 and S2 in terms of elemen-
tary operations, knowing that the minimum complexity to find a random matching is
O(N logN).

FFF

75

Exercise 113 (out of scope for the program 2021/22)
Show that the maximum weight matching (MWM) obtains 100% throughput in an input queued
switch, under admissible uniform Bernoulli i.i.d. traffic. Let X = [xij] be the matrix with xij the
length of the virtual output queue from input i to output j. Let D = [dij] be the MWM computed
on X. Let Λ = [λij] matrix with the average arrival rates. Show the key step in the proof, i.e. it
exists ε > 0 such that:

lim
B→+∞

∑
ij λijxij −

∑
ij dijxij

B
< −ε

where B =
∑

ij xij . Hints:

• use the Birkhoff-von Neumann theorem on Λ;

• exploit the relation between
∑

ij xij with the weight of the MWM computed on X.

Solution: See the class notes.

FFF

Exercise 114 (out of scope for the program 2021/22)
The maximum weight matching (MWM) is claimed to be an optimal scheduling algorithm.

1. for which switching architecture?

2. in which sense?

3. under which conditions?

4. Compare its performance with an output queued (OQ) architecture regarding throughput
and delay, motivating the answer.

5. Is it commonly implemented in routers? Why?

Solution: The MWM algorithm is optimal in the sense that it achieves 100% throughput under
any admissible i.i.d. Bernoulli arrival traffic (more generally, if the traffic follows the law of large
number, the result still holds in a weaker sense). The switching architecture considered is the
input queued (IQ), with a VOQ queueing system.

MWM achieves the same throughput of an OQ, since also an OQ switch achieves the max-
imum throughput by construction. MWM shows higher average delays than an OQ, since the
IQ is non-work-conserving, whereas the OQ is work-conserving by construction. By explaining
the counterexample seen during the class, it is possible to clarify this concept and show that
the delay is actually larger for the IQ switch adopting MWM.

MWM has not been implemented in routers mainly because: (i) it is too complex to im-
plement (requires O(N3) iterations, it cannot be parallelized and pipelined efficiently), (ii) it is
based on a queue metrics (the queue length) which might react with the congestion control of
TCP flows and create problems of starvation for some TCP flows.

FFF

Exercise 115 (out of scope for the program 2021/22)
Prove that the weight of a greedy maximum weight matching (GWM) is at least equal to half the
weight of the maximum weight matching (MWM). In other words, W (GWM) ≥ 1

2W (MWM).
In the proof, denote by E the set of edges in the bipartite graph, by G the sub-set of edges

selected by the GWM, and by M the sub-set of edges selected by the MWM scheduler.

FFF

76

Exercise 116 (out of scope for the program 2021/22)
Prove that the weight of a greedy maximal weight matching (GWM) is at least equal to half the
weight of the maximum weight matching (MWM). In other words,

W (GWM) ≥ 1

2
W (MWM) (3.1)

In the proof, denote by E the set of edges in the bipartite graph, by G the sub-set of edges
selected by the GWM, and by M the sub-set of edges selected by the MWM scheduler.

What is the main consequence of (3.1) in terms of maximum throughput achievable by
GWM?

FFF

Exercise 117 (out of scope for the program 2021/22)
Consider the proof showing that a greedy maximal weight matching (GMWM) obtains 100%
throughput in an input queued switch with speedup s ≥ 2, under admissible uniform Bernoulli
i.i.d. traffic. Let X = [xij] be the matrix with xij the length of the virtual output queue (VOQ)
from input i to output j. Let D = [dij] be the GMWM computed on X. Let Λ = [λij] matrix with
the average arrival rates. Show the key step in the proof, i.e. it exists ε > 0 such that:

lim
B→+∞

∑
ij λijxij −

∑
ij s dijxij

B
< −ε

where B =
∑

ij xij and s is the speedup. Hints:

• use the Birkhoff-von Neumann theorem on Λ;

• exploit the relation between the weight of GMWM and the weight of MWM (Maximum
Weight Matching);

• exploit the relation between
∑

ij xij and the weight of MWM computed on X.

3.2.2 Scheduling algorithms for variable size packets

Exercise 118 (out of scope for the program 2021/22)
Consider an input queue switch fed by variable size packets.

1. Describe the overall architecture highlighting all the involved queuing systems

2. Describe the cell-mode and packet-mode schemes for scheduling the packets

3. Describe a traffic pattern in which packet-mode outperforms cell-mode in terms of aver-
age delay

4. Describe a traffic pattern in which cell-mode outperforms packet-mode in terms of aver-
age delay

5. Compare the two schemes in terms of throughput

FFF

Exercise 119 (out of scope for the program 2021/22)
Describe the packet-mode scheduling approach in input queued switches and discuss its per-
formance in terms of throughput and delays, motivating the answer.

FFF

77

Exercise 120 (out of scope for the program 2021/22)
Consider an input queued switch fed by variable size packets.

1. Describe the overall architecture highlighting all the involved queuing systems

2. Describe both in words and in pseudo-code a “cell mode” scheduler

3. Describe both in words and in pseudo-code a “packet mode” scheduler

4. Compare the two schedulers in terms of throughput and delays

FFF

Exercise 121 (out of scope for the program 2021/22)
Consider an input queued switch fed by variable size packets.

1. Describe the overall architecture highlighting all the involved queuing systems

2. Describe in pseudocode a “packet mode” scheduler

3. Discuss its performance in terms of throughput and delays

FFF

Exercise 122 (out of scope for the program 2021/22)
Consider an IP router, based on a switching matrix transferring data units (called “cells”) of 64
bytes.

1. Describe the internal switching architecture of the router, able to transfer IP packets of
variable size, between 40 and 1518 bytes.

2. If the switching fabric is input queues and no speedup is allowed, which scheduling algo-
rithms can be used? What are the complexity and the performance?

FFF

Exercise 123 (out of scope for the program 2021/22)
Consider a slotted input queued switch, of size N ×M and with Virtual Output Queueing. The
switch is fed by variable-size packets.

1. Describe in pseudo-code a scheduling algorithm working in cell-mode.

2. Describe in pseudo-code a scheduling algorithm working in packet-mode.

3. Compare the performance of the cell-mode algorithm and the packet-mode algorithm in
terms of throughput and delay.

Solution:
The two pseudocodes are available in Fig.s 3.3-3.4.

78

1 // CELL-MODE SCHEDULER
2 // Q[i][j] is the number of cells in VOQ[i][j]
3 int matching[N] // m[i]=j if input i is connected to output j; else NOT_USED
4 int output_reserved[M] // TRUE/FALSE
5

6 // init
7 for (j=0; j<M; j++)
8 output_reserved[j]=FALSE
9 for (i=0; i<N; i++)

10 matching[i]=NOT_USED
11 // schedule
12 for (i=0; i<N; i++) // for each input
13 for (j=0; j<M; j++) // for each output
14 if (Q[i][j]>0 && output_reserved[j]==FALSE)
15 // found available HoL HEAD cell
16 matching[i]=j
17 output_reserved[j]=TRUE
18 break

Figure 3.3: Pseudocode for cell-mode scheduler in Ex. 123

1 // Q[i][j] is the number of cells in VOQ[i][j]
2 // S[i][j] is the state of head-of-line cell of VOQ[i][j]: HEAD/MIDDLE/TAIL
3 static int matching[N] // m[i]=j if in. i is connected to out. j; else NOT_USED
4 int output_reserved[M] // TRUE/FALSE
5

6 // init
7 for (j=0; j<M; j++)
8 output_reserved[j]=FALSE
9 // check old matching

10 for (i=0; i<N; i++)
11 j=matching[i]
12 if (j>=0 && Q[i][j]>0 && S[i][j]!=HEAD)
13 output_reserved[j]=TRUE // keep old edge
14 else
15 matching[i]=NOT_USED // for empty queues or HEAD-cells
16 // schedule
17 for (i=0; i<N; i++) // for each input
18 if (matching[i]==NOT_USED) // check if the input is still available
19 for (j=0; j<M; j++) // for each output
20 if (Q[i][j]>0 && output_reserved[j]==FALSE)
21 // found available HoL HEAD cell
22 matching[i]=j
23 output_reserved[j]=TRUE
24 break

Figure 3.4: Pseudocode for packet-mode scheduler in Ex. 123

3.2.3 Scheduling algorithms for QoS support

Exercise 124 (out of scope for the program 2021/22)
Consider a 4 × 4 input queued switch, with each port running at 5 Gbps. The following rate
matrix must be guaranteed:

R̂ =


0 1.5 1 2
1 1.5 0 1
2 0.5 1.5 0
1 0 1 1.5

 Gbps

• Describe the scheduling algorithm.

• Show the frame sequence.

• Compute the minimum length of the frame.

79

Matching and VOQs Average delay Maximum delay
M1 : 1→ 2, 2→ 1, 3→ 3, 4→ 4 1.2 slots=123 ns 3 slots=307 ns
M2 : 1→ 4, 2→ 2, 3→ 1, 4→ 3 1.2 slots=123 ns 3 slots=307 ns
M3 : 1→ 3, 2→ 4, 3→ 2, 4→ 1 2.0 slots=205 ns 4 slots=410 ns

Table 3.3: Access delays for frame (M1,M1,M2,M2,M3)

Matching and VOQs Average delay Maximum delay
M1 : 1→ 2, 2→ 1, 3→ 3, 4→ 4 0.8 slots=82 ns 2 slots=205 ns
M2 : 1→ 4, 2→ 2, 3→ 1, 4→ 3 0.8 slots=82 ns 2 slots=205 ns
M3 : 1→ 3, 2→ 4, 3→ 2, 4→ 1 2.0 slots=205 ns 4 slots=410 ns

Table 3.4: Access delays for frame (M1,M2,M1,M2,M3)

• Compute the corresponding maximum and average access delay (i.e. under low traffic
load), for each input-output couple, assuming that all the packets are 64 bytes long.

• Does the choice of the sequence of services in the frame affect the performance (through-
put and delay)?

Solution: From R̂, the normalized rate matrix is:

R =


0 0.3 0.2 0.4

0.2 0.3 0 0.2
0.4 0.1 0.3 0
0.2 0 0.2 0.3


Since R is sub-stochastic, a double stochastic matrix R̃ must be found such that: R̃ ≥ R. A
possible solution is the following:

R̃ =


0 0.4 0.2 0.4

0.4 0.4 0 0.2
0.4 0.2 0.4 0
0.2 0 0.4 0.4


The Birkhoff-von Neumann (BvN) algorithm gives the following decomposition:

R̃ = 0.4


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

+ 0.4


0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

+ 0.2


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0


from which:

R̃ = 0.4M1 + 0.4M2 + 0.2M3

The timeslot is T = 102.4 ns. If the frame size is 5 (equal to 512 ns), the required rates are
achievable through the following frame: (M1,M1,M2,M2,M3) from which the access delay for
all possible input-output pairs (VOQs) are shown in table 3.3. Consider now another frame:
(M1,M2,M1,M2,M3). Table 3.4 shows the corresponding access delays. Observe that in
this second case, the access delay for all the VOQs corresponding to M1 and M2 decreases.
However, the worst case access delay, due to the VOQs in M3, does not change.

Hence, the temporal positions of the matchings inside the frame affect in general the delays
but not the throughput, which is guaranteed to satisfy the rate matrix.

FFF

80

Exercise 125 (out of scope for the program 2021/22)
Consider a 5 × 5 input queued switch, with each port running at 10 Gbps. The following rate
matrix must be guaranteed:

R̂ =


1 2 1 2 1
1 1 0 1 3
2 0 2 1 1
1 1 1 4 0
2 3 1 2 2

 Gbps

1. Describe the scheduling algorithm.

2. Show the frame sequence.

3. Compute the minimum length of the frame.

4. Compute the maximum access delay, under low traffic load, for each input-output couple,
assuming that all the packets are 64 bytes long.

5. Does the choice of the sequence of services in the frame affect the performance (through-
put and delay)?

Solution: The exercise is identical to ex. 124, but with different parameters.

FFF

Exercise 126 (out of scope for the program 2021/22)
Consider a 5×5 input queued switch, with ports running at 10 Gbps. The following rates should
be guaranteed:

R =


1 2 4 2 0
2 1 0 3 1
0 1 3 1 2
0 0 0 0 0
3 2 1 3 1

 Gbps

where Rij is the rate from input i to output j. Show how to guarantee these rates and describe
all the algorithms involved.

FFF

Exercise 127 (out of scope for the program 2021/22)
Consider a 3×3 input queued switch, with ports running at 10 Gbps. The following rates should
be guaranteed:

R =

1 2 3
2 1 0
0 1 3

 Gbps

where Rij is the rate from input i to output j. Show how to guarantee these rates and describe
all the algorithms involved.

FFF

Exercise 128 (out of scope for the program 2021/22)
Consider a 3 × 3 input queued switch, with ports running at 8 Gbps. Assume that the internal
timeslot corresponds to a 64 bytes packet. The following rates should be guaranteed:

R =

3 2 2
2 3 2
2 2 3

 Gbps

where Rij is the rate from input i to output j.

81

1. Use the Paul algorithm to find a possible frame sequence F :

• Show the corresponding Clos network

• Show the Paul matrix evolution

• Show the final F

2. Compute the average access delay (in nanoseconds) for each VOQ when adopting F

3. Compute the admissibility conditions for the traffic when adopting F

Solution:
The Clos network is built with 3 I-stage modules 7 × 7, 7 II-stage modules 3 × 3 and 3 III-

stage modules 7× 7. We must connect R′ij circuits from I-stage module i to III-stage module j
and the corresponding request matrix R′ = [R′ij] will be:

R′ =

3 2 2
2 3 2
2 2 3


We do not report here the steps of the Paul algorithm. One possible solution would be a

frame with 7 matchings: F = [Mi]
7
i=1, being:

M1 = M2 = M3 =

1 0 0
0 1 0
0 0 1

 M4 = M5 =

0 1 0
0 0 1
1 0 0

 M6 = M7 =

0 0 1
1 0 0
0 1 0


The access delays are the following:

VOQ Serving matchings Average access delay (in timeslots)
11, 22, 33 M1,M2,M3 (1+1+1+5+4+3+2)/7=17/7
12, 23, 31 M4,M5 (4+3+2+1+1+6+5)/7=22/7
13, 21, 32 M6,M7 (6+5+4+3+2+1+1)/7=22/7

The absolute delay can be computed by multiplying the last column for the duration T of each
timeslot, being

T =
64× 8 bit
8 Gbps

= 64 ns

When adopting the above frame F , in terms of normalized arrival rates, the admissibility
conditions will be

Λ′ ≤ R′/7

In terms of absolute arrival rates, the admissibility conditions will be:

Λ = R′/7× 8 Gbps =

3.43 2.28 2.28
2.28 3.43 2.28
2.28 2.28 3.43

 Gbps

Exercise 129 (out of scope for the program 2021/22)
Consider a 4×4 input queued switch with virtual output queues (VOQs), with each port running
at 10 Gbps. Assume that the internal timeslot corresponds to a 64 bytes packet. The following
rate matrix must be guaranteed:

R̂ =


1 2 1 4
2 4 1 1
4 1 2 1
1 1 4 2

 Gbps

82

1. Find the frame sequence F , using Paul algorithm.

2. What are the admissibility conditions for the traffic to achieve the maximum throughput?

3. What is the minimum worst-case access delay and the corresponding VOQs?

4. What is the maximum worst-case access delay and the corresponding VOQs?

Solution:

1. Using Paul algorithm, a possible frame of 8 timeslots F = [Mi]
8
i=1 is the following:

M1 = M2 = M3 = M4 =


0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

 M5 = M6 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1



M7 =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 M8 =


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0


2. The traffic matrix Λ to be admissile and achieve the maximum throughput must satisfy:

Λ ≤ R̂/8× 10 =


1.25 2.50 1.25 5.00
2.50 5.00 1.25 1.25
5.00 1.25 2.50 1.25
1.25 1.25 5.00 2.50

 Gbps

3. According to F , all the VOQs corresponding to M1 experience a worst-case access delay
equal to 5 timeslots, which is the minimum among all the VOQs.

4. According to F , all the VOQs corresponding to M7 and M8 experience a worst-case
access delay equal to 8 timeslots, which is the maximum among all the VOQs.

FFF

Exercise 130 (out of scope for the program 2021/22)
Consider a 4×4 input queued switch, with each port running at 8 Gbps. Assume that the inter-
nal timeslot corresponds to a 64 bytes packet. The following rate matrix must be guaranteed:

R̂ =


0 1 4 2
1 2 0 1
4 0 1 1
2 2 2 2

 Gbps

1. Use the Paul algorithm to find the possible frame sequence, named F1.

2. Use the Birkhoff-von Neumann decomposition to find the possible frame sequence,
named F2.

3. Are F1 and F2 the same? Why?

4. Under which admissibility conditions, the two frame sequences F1 and F2 allow to obtain
the maximum throughput?

83

5. Rearrange F1 and F2 to maximize the worst case access delay, under low traffic load, for
the flow from input 1 to output 3. Compute this delay in µs.

6. Rearrange F1 and F2 to minimize the worst case access delay, under low traffic load, for
the flow from input 1 to output 3. Compute this delay in µs.

FFF

Exercise 131 (out of scope for the program 2021/22)
Consider a 4×4 input queued switch, with each port running at 8 Gbps. Assume that the inter-
nal timeslot corresponds to a 64 bytes packet. The following rate matrix must be guaranteed:

R̂ =


1 1 1 1
2 2 0 0
0 2 1 1
1 0 0 2

 Gbps

1. Draw the simplest Clos network which allows to use Paul algorithm to decompose the
matrix.

2. Find the possible frame sequence, named F1, according to Paul algorithm.

3. Use the Birkhoff-von Neumann decomposition to find the possible frame sequence,
named F2.

4. Are F1 and F2 the same? Why?

5. Under which admissibility conditions, the two frame sequences F1 and F2 allow to obtain
the maximum throughput?

FFF

Exercise 132 (out of scope for the program 2021/22)
Consider a 4×4 input queued switch, with ports running at 10 Gbps. The following rates should
be guaranteed:

R =


1 2 3 2
2 1 0 4
0 1 3 1
0 0 0 0

 Gbps

where Rij is the rate from input i to output j. Show how to guarantee these rates and describe
all the algorithms involved.

FFF

Exercise 133 (out of scope for the program 2021/22)
Consider a slotted 4× 4 input-queued switch, with input ports running at 100 Mbit/s. Each slot
lasts 5 µs. The following rate matrix must be guaranteed:

Λ =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 Mbit/s

Answer the following:

1. Is the traffic admissible? Why?

84

2. Compute a matching sequence in a frame F1 to support Λ, and to minimize the frame
duration and the worst case access delay.

3. Compute a matching sequence in a frame F2 to support Λ with only 4 matchings.

For each frame F1 and F2,

1. What is the frame duration in [s]?

2. What is the worst case access delay for each input-output couple?

Solution: The traffic is admissible, since the highest load on a input/output port is 58 Mbit/s,
which is less than 100 Mbit/s.

To minimize the frame duration, Λ can be augmented (simply) up to:

Λ′ =


25 25 25 25
25 25 25 25
25 25 25 25
25 25 25 25

 Mbit/s

for which the frame is trivially:
F1 = (M1,M2,M3,M4)

where Mk is the matching corresponding to the i-th generalized diagonal in the matrix. Now
F1 lasts 4 slots, i.e. 20 µs; the corresponding worst case access delay is 3 slots, i.e. 15 µs and
the average access delay is 1.5 slots, i.e. 7.5 µs.

Note that F1 satisfies also the requirements for F2.

FFF

Exercise 134 (out of scope for the program 2021/22)
Consider a generic frame scheduling policy for input queued switches in which the arrival rates
are known and the scheduling decision are taken oblivious of the queue state.

1. Prove that the average delay grows as O(N) in order sense, for one of the possible frame
scheduling algorithms.

2. Is it possible to improve the average delay in order sense? How?

If needed, for a slotted Geom/Geom/1 queue with arrival probability λ and service probability
µ, the average delay is:

WGeom/Geom/1 =
η

λ(1− η)
with η =

λ(1− µ)

µ(1− λ)

If needed, for a slotted M/D/1 queue with binomial (N, ρ/N) arrivals per slot, the average delay
is:

WM/D/1 = 1 +
ρ

2(1− ρ)

3.2.4 Scheduling algorithms for multicast traffic

Exercise 135
Describe in pseudo-code an algorithm to schedule the transmissions of unicast and multicast
packets in a slotted input queued switch, of size N × P . Assume that the queue structure at
each input port is the following: i) a single FIFO queue for all unicast packets destined to a
particular output; ii) a single FIFO queue for all the multicast packets. At each timeslot, let

85

1 // initialize the data structures
2 for j=1...P // for each output port
3 output_reserved[j]=false
4 for i=1...N // for each input port
5 X[i][j]=false
6 // scheduler decision
7 for i=1...N // for each input port
8 // try to serve the multicast traffic
9 multicast_served=false

10 if (M[i]>0) // check if the mc queue is non-empty
11 for j=1...P // for each output port
12 if (destInMCQueue(j,i) AND (output_reserved[j]==false))
13 // it means that the output is present in the
14 // fanout set and it has not been reserved so far
15 output_reserved[j]=true
16 X[i][j]=true
17 multicast_served=true
18 // try to serve a unicast queue only if it is available
19 if (multicast_served==false)
20 // M[i] has not served; now look at unicast traffic
21 for j=1...P
22 if ((Q[i][j]>0) AND (output_reserved[j]==false))
23 X[i][j]=true
24 output_reserved[j]=true
25 break

Figure 3.5: Pseudocode for Ex. 135

Q[i][j] be the size of the queue for unicast packets at input i and destined to output j. Let
M[i] be the size of the queue for multicast packets at input i. Let X a matrix describing the
switching configuration chosen in the current timeslot, based on the state of the queues. More
precisely, X[i][j] is a boolean variable, which assumes the value true iff the crosspoint from
input i to output j is active, i.e. a packet is sent from input ”i to output j in the current timeslot.

1. Compute the total number of queues for each input and in the whole switch.

2. Write in pseudo-code a maximal scheduling algorithm that allows fanout splitting and
serves the multicast packets at higher priority with respect to unicast packets. Assume
that a function destInMCQueue(j,i) that returns true iff output j belongs to the fanout
set of the packet at the head of the multicast queue M[i] at input i is available.

3. Does the algorithm achieve 100% throughput under any admissible traffic? Why? (ques-
tion out of scope for the program 2021/22)

Solution: The total number of queues for each input is P + 1, and for the whole switch is
N(P + 1).

The psedocode is reported in Fig. 3.5.
The switch cannot obtain the maximum throughput because of any of the following reasons:

(i) the queueing is not optimal and suffers the HoL blocking problem for multicast traffic, (ii) the
scheduling policy is not optimal. In general, an input queued switch cannot obtain the maximum
throughput under any admissible multicast traffic because of intrinsic architecture limitations,
highlighted by specific arrivals patterns.

FFF

Exercise 136
Consider an input queued switch of size N ×M supporting both unicast and multicast traffic.
Assume that each input is equipped with just 2 queues: one queue for broadcast packets and
one queue for multicast (but not broadcast) traffic, including unicast traffic.

86

Consider a scheduling algorithm that does not allow fanout-splitting and serves broadcast
traffic at highest priority. As a reminder, the fanout set of a multicast packet is the set of its
destination ports.

1. Show an example (if any) of admissible arrival pattern for which the scheduler achieves
the maximum throughput. (question out of scope for the program 2021/22)

2. Show an example (if any) of admissible arrival pattern for which the scheduler does not
achieve the maximum throughput. (question out of scope for the program 2021/22)

3. What are the performances of the switch fed by unicast traffic only? (question out of
scope for the program 2021/22)

4. Describe in pseudo-code the scheduling algorithm, using the notation below.

At each timeslot, let B[i] be the size of the queue for broadcast packets at input i. Let
M[i] be the size of the queue for multicast/unicast packets at input i. Assume that function
destInMCQueue(j,i) returns true iff output j belongs to the fanout set of the packet at the
head of the multicast queue M[i]. Let X be the matrix describing the switching configuration
chosen in the current timeslot, based on the state of the queues. More precisely, X[i][j] is
a boolean variable, which assumes the value true iff the crosspoint from input i to output j
is active, i.e. a packet must be sent from input i to output j in the current timeslot.

Solution:
The switch is able to achieve the maximum throughput when all the inputs are receiving

broadcast packets with probability ≤ 1/N each.
The switch is not able to achieve the maximum throughput for generic multicast packets,

due to the no-fanout splitting policy. For example, consider input 1 receiving packets with
fanout set {1, 2} (with prob. 0.5 per timeslot) and {3, 4} (with prob. 0.5 per timeslot) and input
2 receiving packets with fanout set {1, 3} (with prob. 0.5 per timeslot) and {2, 4} (with prob. 0.5
per timeslot). Even if the traffic is admissible, at most one packet is served per timeslot; hence,
half of the packets are lost.

Under unicast traffic only, the switch behaves exactly as a single queue per input switch.
Under admissible uniform i.i.d. Bernoulli arrivals, the maximum throughput is around 58%.

The pseudocode is available in Fig. 3.6.

FFF

Exercise 137
Consider an input queued switch of size N ×M supporting both unicast and multicast traffic.
Assume that each input is equipped with just one queue. The scheduling algorithm is designed
(i) to allow fanout-splitting, and (ii) to serve always the packet with largest fanout among all the
inputs, at each timeslot. As a reminder, the fanout set of a multicast packet is the set of its
destination ports.

1. Define properly the concept of “admissible multicast traffic”, with the help of formulas.
(question out of scope for the program 2021/22)

2. Show an example (if any) of admissible arrival pattern for which the scheduler achieves
the maximum throughput. (question out of scope for the program 2021/22)

3. Show an example (if any) of admissible arrival pattern for which the scheduler does not
achieve the maximum throughput. (question out of scope for the program 2021/22)

4. Describe in pseudo-code the scheduling algorithm, using the notation below.

87

1 // initialize the data structures
2 for j=1...M // for each output port
3 output_reserved[j]=false
4 for i=1...N // for each input port
5 X[i][j]=false
6 // first, try to serve broadcast packets
7 for i=1...N // for each input port
8 if (B[i]>0)
9 // found broadcast packet with all available outputs

10 for j=1...N
11 X[i][j]=true
12 output_reserved[j]=true // (not needed)
13 return // ends since switching configuration is maximal
14 // second, try to serve multicast packets
15 for i=1...N
16 if (M[i]>0) // check if the mc queue is non-empty
17 // check if all the corresponding outputs are available
18 multicast_available=true
19 for j=1...M // for each output port
20 if (destInMCQueue(j,i))
21 // j is in the fanout set of the packet
22 if (output_reserved[j])
23 // the output is already reserved
24 multicast_available=false
25 break // useless to continue to check
26 if (multicast_available)
27 // reserve all the outputs
28 for j=1...M // for each output port
29 if (destInMCQueue(j,i))
30 output_reserved[j]=true
31 X[i][j]=true

Figure 3.6: Pseudocode for Ex. 136

At each timeslot, let M[i] be the size of the queue at input i. Function destInMCQueue(j,i)
returns true iff output j belongs to the fanout set of the packet at the head of the multicast
queue M[i]. Let X be a boolean matrix describing the switching configuration chosen in the
current timeslot, based on the state of the queues: X[i][j] is true iff the crosspoint from
input i to output j is active, i.e. a packet must be sent from input i to output j in the current
timeslot.

Solution: The pseudocode is available in Fig. 3.7.

FFF

Exercise 138
Consider an input queued switch of size N ×M supporting both unicast and multicast traffic.
Assume that each input is equipped with just 2 queues: one queue for broadcast packets and
one queue for both multicast and unicast traffic.

Consider a scheduling algorithm that does not allow fanout-splitting and serves broadcast
traffic at highest priority.

1. Show an example (if any) of admissible arrival pattern for which the scheduler achieves
the maximum throughput. (question out of scope for the program 2021/22)

2. Show an example (if any) of admissible arrival pattern for which the scheduler does not
achieve the maximum throughput. (question out of scope for the program 2021/22)

3. What are the performances of the switch fed by unicast traffic only? (question out of
scope for the program 2021/22)

4. Describe in pseudo-code the scheduling algorithm, using the notation below.

88

1 // initialize the data structures
2 for j=1...M // for each output port
3 output_reserved[j]=false
4 for i=1...N // for each input port
5 X[i][j]=false
6 // first, find the largest fanout
7 max_fanout=0;
8 max_fanout_input=-1;
9 for i=1...N // for each input port

10 // skip empty queues
11 if M[i]==0
12 continue // consider another input
13 // compute the fanout
14 acc=0
15 for j=1...M // check if each output is in the fanout set
16 if (destInMCQueue(j,i))
17 acc++
18 // now acc is the fanout, update eventually the max
19 if (acc>max_fanout)
20 max_fanout=acc
21 max_fanout_input=i
22 // reserve the largest fanout (if available)
23 if (max_fanout>0)
24 for j=1...M
25 if (destInMCQueue(j,max_fanout_input))
26 X[max_fanout_input][j]=true // reserve crosspoint
27 output_reserved[j]=true // reserve output
28 // second, serve all the other inputs in a greedy fashion
29 for i=1...N
30 // skip the input already reserved
31 if (i==max_fanout_input)
32 continue // consider another input
33 if (M[i]>0)
34 // found a non empty queue
35 for j=1...M
36 if (destInMCQueue(j,i) AND (!output_reserved[j]))
37 X[i][j]=true // reserve crosspoint
38 output_reserved[j]=true // reserve output

Figure 3.7: Pseudocode for Ex. 137

At each timeslot, let B[i] be the size of the queue for broadcast packets at input i. Let
M[i] be the size of the queue for multicast/unicast packets at input i. Assume that function
destInMCQueue(j,i) returns true iff output j belongs to the fanout set of the packet at the
head of the multicast queue M[i]. Let X be the matrix describing the switching configuration
chosen in the current timeslot, based on the state of the queues. More precisely, X[i][j] is
a boolean variable, which assumes the value true iff the crosspoint from input i to output j
is active, i.e. a packet must be sent from input i to output j in the current timeslot.

Solution:
The switch is able to achieve the maximum throughput when all the inputs are receiving

broadcast packets with probability ≤ 1/N each.
The switch is not able to achieve the maximum throughput for generic multicast packets,

due to the no-fanout splitting policy. For example, consider input 1 receiving packets with
fanout set {1, 2} (with prob. 0.5 per timeslot) and {3, 4} (with prob. 0.5 per timeslot) and input
2 receiving packets with fanout set {1, 3} (with prob. 0.5 per timeslot) and {2, 4} (with prob. 0.5
per timeslot). Even if the traffic is admissible, at most one packet is served per timeslot; hence,
half of the packets are lost.

Under unicast traffic only, the switch behaves exactly as a single queue per input switch.
Under admissible uniform i.i.d. Bernoulli arrivals, the maximum throughput is around 58%.

The pseudocode is available in Fig. 3.8.

89

1 // initialize the data structures
2 for j=1...M // for each output port
3 output_reserved[j]=false
4 for i=1...N // for each input port
5 X[i][j]=false
6 // first, try to serve broadcast packets
7 for i=1...N // for each input port
8 if (B[i]>0)
9 // found broadcast packet with all available outputs

10 for j=1...N
11 X[i][j]=true
12 output_reserved[j]=true // (not needed)
13 return // ends since switching configuration is maximal
14 // second, try to serve multicast packets
15 for i=1...N
16 if (M[i]>0) // check if the mc queue is non-empty
17 // check if all the corresponding outputs are available
18 multicast_available=true
19 for j=1...M // for each output port
20 if (destInMCQueue(j,i))
21 // j is in the fanout set of the packet
22 if (output_reserved[j])
23 // the output is already reserved
24 multicast_available=false
25 break // useless to continue to check
26 if (multicast_available)
27 // reserve all the outputs
28 for j=1...M // for each output port
29 if (destInMCQueue(j,i))
30 output_reserved[j]=true
31 X[i][j]=true

Figure 3.8: Pseudocode for Ex. 138

FFF

Exercise 139
Consider an input queued switch of size N ×M supporting both unicast and multicast traffic.
Assume that each input is equipped with just 2 queues: one queue for broadcast packets
and one queue for multicast (but not broadcast) traffic, including unicast traffic. Consider a
scheduling algorithm that allows fanout-splitting and serves broadcast traffic at highest priority.
As a reminder, the fanout set of a multicast packet is the set of its destination ports.

Describe in pseudo-code the scheduling algorithm, using the following notation. At each
timeslot, let B[i] be the size of the queue for broadcast packets at input i. Let M[i]
be the size of the queue for multicast/unicast packets at input i. Assume that function
destInMCQueue(j,i) returns true iff output j belongs to the fanout set of the packet at
the head of the multicast queue M[i]. Let X be the matrix describing the switching configura-
tion chosen in the current timeslot, based on the state of the queues. More precisely, X[i][j]
is a Boolean variable, which assumes the value true iff the crosspoint from input i to output
j is active, i.e. a packet must be sent from input i to output j in the current timeslot.

Solution: The pseudocode is available in Fig. 3.9.

FFF

Exercise 140 (out of scope for the program 2021/22)
Consider an N ×M input queued switch supporting multicast traffic, with optimal queueing
structure MC-VOQ for multicast.

1. Define the MC-VOQ queueing and compute the total number of queues.

90

1 // initialize the data structures
2 for j=1...M // for each output port
3 output_reserved[j]=false
4 for i=1...N // for each input port
5 X[i][j]=false
6 // first, try to serve broadcast packets
7 for i=1...N // for each input port
8 if (B[i]>0)
9 // found broadcast packet with all available outputs

10 for j=1...N
11 X[i][j]=true
12 output_reserved[j]=true // (not needed)
13 return // ends since switching configuration is maximal
14 // second, try to serve multicast packets
15 for i=1...N
16 if (M[i]>0) // check if the mc queue is non-empty
17 for j=1...M // for each output port
18 // check is any output in the fanout set is available
19 if (destInMCQueue(j,i)==true AND output_reserved[j]==false)
20 output_reserved[j]=true
21 X[i][j]=true

Figure 3.9: Pseudocode for Ex. 139

2. Write the pseudocode of a maximal scheduler allowing fanout-splitting (i.e. a multicast
packet can be sent to a subset of destinations). Comment the code. Use the data
structures reported below. Any data structure must be properly defined and eventually
initialized.

3. Comment about the fairness of the above code.

4. In which application scenarios multicast traffic is relevant for high speed networking?

As notation, assume that Q[i][k] is the occupancy of queue k at input i and FS(k)
returns the fanout set (i.e. the set of destination outputs) of the packets stored in queue k.
The crossbar configuration is described by two vectors: let X be a vector of size M defined as
follows: X[j]=i whenever input i sends a copy of the packet to output j; let Y be a vector
of size N describing the queues to serve, defined as Y[i]=k whenever queue k is served at
input i.

Solution:

1. In the MC-VOQ structure, each input has one dedicated queue for each possible fanout
set, thus a total of N × (2M − 1) queues are present in the switch.

2. See below code.

3. The below code is unfair since the queues belonging to the first inputs and the ones
identified by smaller values of k will be served at higher priority than the other queues.

4. Example of applications for which multicast is important is: broadcast in VLAN scenarios
or virtualized networks, duplication of data in data center, financial transactions (high-
frequency trading).

91

1 // initialize data structures
2 for j=1...M // for each output port
3 X[j]=-1 // output j non connected
4 for i=1...N // for each input port
5 Y[i]=-1 // the queue has not be chosen so far
6 // take scheduling decision
7 for i=1...N // for each input port
8 for k=1...(2ˆM-1) // for each queue
9 if (Q[i][k]>0) // check if the queue is not empty

10 for each j in FS(k) // for each output in the fanout set
11 if (X[j]==-1) // check if the output is still available
12 // matching the input with the output
13 Y[i]=k // store the queue to serve
14 X[j]=i // match input i with output j
15 if (Y[i]>0) // check if an input has been found
16 break // consider a new input

92

Chapter 4

Fast packet classification and SDN

4.1 Lookup tables for packet forwarding

Exercise 141
Given the following routing table:

IP routing table
Destination/Netmask Gateway (Rule)
32.0.0.0/4 A
32.0.0.0/6 B
40.0.0.0/6 C
56.0.0.0/5 D
56.0.0.0/8 E
57.0.0.0/9 F
57.128.0.0/9 G
default H

1. Build the corresponding binary trie.

2. Build the corresponding patricia trie.

Solution: Compute the prefix list:

Prefix Rule
0010* A
001000* B
001010* C
00111* D
00111000* E
001110010* F
001110011* G

* H

Fig.s 4.1 and 4.2 show the binary trie and the patricia trie.

FFF

Exercise 142
Given the following routing table:

IP routing table
Destination/Netmask Gateway (Rule)
64.0.0.0/3 A
64.0.0.0/5 B
80.0.0.0/5 C
112.0.0.0/4 D
112.0.0.0/7 E
114.0.0.0/8 F
115.0.0.0/8 G
default H

93

0

0

1

1

10

10

0 0 0

0

10

10

A

B

D

C

E

F G

H

Figure 4.1: Binary trie (Ex. 141)

-,H,4

0010,A,5 00111,D,8

001000,B,- 001010,C,- 00111000,E,- 00111001,-,9

F G

0

0 0

0

1

1

1

1

Figure 4.2: Patricia trie, in the format: “prefix, rule, next-bit-to-inspect” (Ex. 141)

1. Build the corresponding binary trie.

2. Build the corresponding patricia trie.

Solution:
The exercise is identical to Ex. 141 but with an initial “0” in the prefix. Thus the solution can

be easily derived from Fig.s 4.1 and 4.2.

FFF

Exercise 143
Given the following routing table:
IP routing table
Destination/Netmask Gateway (Rule)
64.0.0.0/2 B
96.0.0.0/4 C
112.0.0.0/4 D
112.0.0.0/5 M
120.0.0.0/8 L
128.0.0.0/1 E
192.0.0.0/3 F
224.0.0.0/4 G
238.0.0.0/7 H
239.128.0.0/9 I
default A

94

1. Build the corresponding binary trie.

2. Build the corresponding patricia trie.

3. Which trie is better than the other? Why?

FFF

Exercise 144
Given the following routing table, represented as (prefix, rule):

(0000, A), (0001, B), (001, C), (01, D), (010, E), (011, F), (1, G), (1000, H), (1001, I), (1110, L), (1111,M)

1. Build the corresponding binary trie.

2. Build the corresponding Patricia trie.

3. Evaluate the number of memory accesses when searching for a given address:

Num. memory accesses
Address Binary trie Patricia trie

0000 0000
0111 1111
1011 1111
1100 1100
1111 1111

FFF

Exercise 145
Given the following routing table:

IP routing table
Destination/Netmask Gateway (Rule)
16.0.0.0/5 A
28.0.0.0/6 B
26.0.0.0/7 C
128.0.0.0/5 D
193.0.0.0/8 E
129.0.0.0/8 F
default G

1. Build the corresponding binary trie, after having defined the fields within each node.

2. Build the corresponding Patricia trie, after having defined the fields within each node.

Solution:
The corresponding binary trie and Patricia trie are shown in Figs. 4.3 and 4.4, respectively.

Exercise 146
Consider a packet classification mechanism for TCP/IP traffic, implemented in a router. Let us
assume that the classification is based just on the destination IP address and on the TCP des-
tination port. Build a compressed trie (based on Patricia trie) from the set of rules in Table 4.1.
In addition, evaluate the minimum number of bits needed to represent all the trie, assuming
that each pointer inside the trie requires 8 bits.

FFF

95

Figure 4.3: Binary trie (Ex. 145).

Figure 4.4: Patricia trie (Ex. 145).

Exercise 147
Consider the data structure for fast IP lookup based on (i) binary trie and (ii) Patricia trie. For
simplicity, assume that IP addresses are coded on 4 bits, instead of the usual 32 bits.

96

Table 4.1: Set of rules (Ex. 146)
Destination IP address Destination TCP port Action

10* 80 A
0111* 25 B
100* 25 C

0111* 21 D
10* 25 E
1* 21 F
* 80 G

011* 25 H
0111* 80 I

010100* 25 L
* 25 M
* * N

1. Show a routing table in which the binary trie has the same lookup time than the Patricia
trie, and draw the corresponding trie;

2. Show a routing table in which the binary trie has a worst lookup time than the Patricia
trie, and draw the corresponding trie.

Assume that the lookup complexity is given simply by the number of comparison while visiting
the trie.

Solution:

1.
Prefix Rule
* A

2.
Prefix Rule
0000 A

4.2 Software Defined Networking

Exercise 148
Consider the new network paradigm denoted as “Software Defined Networking” (SDN).

1. What is the main difference with the traditional Internet architecture?

2. What is a SDN controller? How can its API interfaces be classified?

3. What is Openflow?

4. How is a flow table defined in Openflow?

5. What are the main messages defined in Openflow and what are their purposes?

6. What are the main consequences of Openflow on the design of the switching architec-
tures?

FFF

Exercise 149
Consider the new network paradigm denoted as “Software Defined Networking” (SDN).

97

1. What are the flow tables?

2. Show three examples of flow rules corresponding to (i) an Ethernet switch, (ii) an IP
router and (iii) a firewall.

3. Explain the differences between Single Match Tables, Multiple Match Tables and Recon-
figurable Match Tables.

4. Show an example in which the three kind of tables are different for the same set of flow
rules.

5. What is the difference between Openflow and P4, referring to the flow tables?

FFF

Exercise 150
In a Software-Defined-Network (SDN), any switch is equipped with a match-action table that
is followed to process and forward incoming data. Describe a software-based, compressed
data structure to store efficiently the match-action rules reported in Table 4.2. Describe an
hardware-based solution based on a TCAM and evaluate the required memory size.

Table 4.2: Match-action table (Ex. 150)
MAC MAC IP IP TCP port TCP port ACTION

source dest. source dest. source dest.
* * 01* * * * drop

M1 * * * * * drop
* * * 1* * * forward to output 1
* * * 101* * * forward to output 1
* * * 10000* * * forward to output 2
* * * 100001* * * forward to output 1
* * * 100001* * 80 drop
* * * 100001* * 25 forward to output 3
* * * 01* * 25 flood
* * * * * * drop

Solution:
Regarding the software implementation, a simple patricia trie built with just the rules in “IP

destination” would be enough for the main structure of the decision tree. The patricia trie must
be equipped with additional pointers to manage the whole set of rules.

Regarding the TCAM implementation, each row (rule) requires: 48 + 48 + 32 + 32 + 16 + 16
bits. In total, 10 rows are enough. An additional table with the 10 actions must be provided.
Since each action can be coded with 3 bits, a minimum of 30 bits would be required.

FFF

Exercise 151
Consider a SDN network based on Openflow as protocol adopted in the southbound interface.

1. Describe all the three possible kinds of Openflow messages, highlighting the purpose of
each of them.

2. What is a flow table in Openflow?

3. Describe the internal architecture of an Openflow switch, highlighting all the main com-
ponents and the kinds of adopted memories.

98

4. Consider the scenario of Fig. 4.5 in which an Openflow switch is used to connect two
hosts. Assume that Host 1 sends two Ethernet packets to Host 2, denoted as p1 and
p2. Assume that the controller knows the network topology and adopts a reactive routing
application, i.e. the flow tables are populated in realtime as soon as the traffic is received.

Host 1

SDN controller

Host 2

Port A

Port B

Figure 4.5: Network scenario (Ex. 151)

(a) Show the sequence of the packets that are exchanged in the data plane (between
the hosts and the switch) and in the control plane (between the switch and the
controller) by filling the following table:

Sequence number Link Packet

(b) Show the final flow table in the switch

Solution:
For the considered scenario, a possible sequence of packets is the following:

Seq. Link Packet
1 Host 1→ Switch p1
2 Switch→ Controller Packet-in(p1, from port A)
3 Controller→ Switch Packet-out(p1, to port B)
4 Controller→ Switch Flow-mod(send to port B all packets destined to MAC(Host 2))
5 Switch→ Host 2 p1
6 Host 1→ Switch p2
7 Switch→ Host 2 p2

The final flow table will be:

MAC-source MAC-dest IP-source IP-dest · · · Action
* MAC(Host 2) * * * Send to port B

Exercise 152
Consider the network shown in Fig. 4.6, connecting host H1 to host H2 through 2 Openflow
switches (A and B).

Assume now that two Ethernet packets are sent from H1 to H2 and that all the flow tables
in the switches are initially empty. Show the sequence of packets observed in all the links (both
data plane and control plane), highlighting the role of pkt-in, pkt-out and flow-mod messages.
Show the final flow tables in both switches.

99

OpenFlow controller

Switch A Switch BH1 H2

Figure 4.6: Openflow network scenario (Ex. 152)

100

Chapter 5

Probabilistic data structures

5.1 Hash tables and fingerprinting

Exercise 153
Consider a hash table with 4 buckets storing IP addresses and the corresponding number of
packets.

1. What is the difference between a hash function and a hash table?

2. Define a proper hash function.

3. According to the above hash function, describe the state of the hash table after each
operation:

Operation Bucket 1 Bucket 2 Bucket 3 Bucket 4
Insert (10.0.0.1,10)
Insert (10.0.1.1,15)
Insert (10.0.2.1,20)
Insert (10.0.3.1,25)
Insert (10.0.2.1,30)
Insert (10.0.4.1,40)
Delete (10.0.0.1)

Solution:
Let a.b.c.d be the IP address represented in decimal format. Now a simple hash function

could be: h(a.b.c.d) = (a+ b+ c+ d) mod 4.

Operation Bucket 1 Bucket 2 Bucket 3 Bucket 4
Insert (10.0.0.1,10) (10.0.0.1,10)
Insert (10.0.1.1,15) (10.0.1.1,15) (10.0.0.1,10)
Insert (10.0.2.1,20) (10.0.1.1,15) (10.0.2.1,20) (10.0.0.1,10)
Insert (10.0.3.1,25) (10.0.1.1,15) (10.0.2.1,20) (10.0.3.1,25) (10.0.0.1,10)
Insert (10.0.2.1,30) (10.0.1.1,15) (10.0.2.1,30) (10.0.3.1,25) (10.0.0.1,10)
Insert (10.0.4.1,40) (10.0.1.1,15) (10.0.2.1,30) (10.0.3.1,25) (10.0.0.1,10), (10.0.4.1,40)
Delete (10.0.0.1) (10.0.1.1,15) (10.0.2.1,30) (10.0.3.1,25) (10.0.4.1,40)

FFF

Exercise 154
Consider a traffic monitoring system that tracks the number of IP packets transferred for each
traffic flow. A flow x is identified by the pair of IP source and destination addresses. We assume
that the data structure to store the number of packets for each flow is a hash table with 65,536
buckets, specifically designed to exploit the “power of 2 random choices” result for random load
balancing.

101

1. What is the claim of the “power of 2 random choice” result? Why is it relevant for hash
tables?

2. Describe in details two hash functions h1(x) and h2(x) specifically designed for the flow
identifier considered in the problem and for the given size of the hash table.

3. Describe in pseudocode the operation to update the hash table when a new packet of
flow x is processed.

Solution:

1. See the class notes

2. Each hash function must map a sequence of 64 bits (i.e. 32 bits for the IP source and 32
bits for the IP destination), denoted as x to a sequence of 16 bits (i.e. log2 65536, to index
each bucket of the hash table). Let x1 the integer value (∈ [0, 232 − 1]) corresponding to
the IP source address and the x2 the one corresponding to the IP destination address.
Thus, one possible option would be h1(x) = x1 mod 216 and h2(x) = x2 mod 216, i.e.
h1(x) uses the 16 least significant bit of the source IP address and h2(x) the 16 least
significant bit of true source IP address. Notably, using instead the most significant bits
would perform poorly (i.e. higher hash collision) due to the particular structure of the IP
addresses.

3. Let T be the hash table and T [i] is the ith bucket, implementing a linked list to store
elements in the format (x, v), where x is the flow identifier and v is the corresponding
number of packets. The operation to update T whenever a new packet of x is received is
described as follows:

function UPDATE FLOW(x)
if x ∈ T [h1(x)] then . x found in bucket h1(x)

Insert (x, v + 1) in T [h1(x)] . Update counter and store it again
else if x ∈ T [h2(x)] then . x found in bucket h2(x)

Insert (x, v + 1) in T [h2(x)] . Update counter and store it again
else . x not found in hash table T

s1 =sizeof(T [h1(x)]) . Find the size of bucket h1(x)
s2 =sizeof(T [h2(x)]) . Fing the size of bucket h2(x)
if s1 < s2 then . Store x into the smallest bucket

Insert (x, 1) in T [h1(x)] . s1 is the smallest
else

Insert (x, 1) in T [h2(x)] . s2 is the smallest
end if

end if
end function

FFF

Exercise 155
Consider a detection system for Distributed Deny of Service (DDoS) attacks that tracks the
number of IP packets transferred for each traffic flow. A flow x is identified by the source-
destination IP addresses and the port numbers at transport layer (only if present). We assume
that the data structure to store the number of packets for each flow is a hash table with 65,536
buckets, specifically designed to exploit the “power of 2 random choices” result for random load
balancing.

1. What is the claim of the “power of 2 random choices” result? Why is it relevant for hash
tables?

102

2. Describe in details two hash functions h1(x) and h2(x) specifically designed for the flow
identifier considered in the problem and for the given size of the hash table.

3. Describe in pseudocode the operation to update the hash table when a new packet of
flow x is processed.

FFF

Exercise 156
Consider a traditional hash table with H buckets to store <key,value> elements.

1. Define the concept of “hash function” and describe its properties.

2. Explain the two main relevant results regarding random policies for bins-and-balls mod-
els, describing all the involved assumptions.

3. Describe two different ways to implement hash tables that exploit the above two results.

4. For each of the two implementations:

(a) Describe in pseudocode the insertion of an element; for simplicity, assume that the
key does not appear already in the hash.

(b) Describe in pseudocode the lookup of an element.

(c) Evaluate the expected lookup time.

(d) Evaluate the worst case lookup time.

(e) Show an example of insertion of 12 elements when H = 4.

Solution:
Regarding 4a and 4b, let h(k) and g(k) be two hash functions that map a key k into the

interval [1, H]. Let T = [Ti]
H
i=1 be a table with H buckets, in which Ti is bucket i.

• For traditional hash tables:

function INSERT(k, v) . k is the key and v is the value
Add (k, v) in Th(k) . Add the element

end function

function LOOKUP(k) . k is the key
for each (k′, v′) ∈ Th(k) do . Check bucket h(k)

if k = k′ then . Key k found
return v′

end if
end for
return Not-found

end function

• For multiple-choice hash tables:

function INSERT(k, v) . k is the key and v is the value
if |Th(k)| ≤ |Tg(k)| then . Find the smallest bucket

Add (k, v) in Th(k) . Add the element
else

Add (k, v) in Tg(k) . Add the element
end if

end function

103

function LOOKUP(k) . k is the key
for each (k′, v′) ∈ Th(k) do . Check first bucket h(k)

if k = k′ then . Key k found
return v′

end if
end for
for each (k′, v′) ∈ Tg(k) do . Check second bucket

g(k)
if k = k′ then . Key k found

return v′

end if
end for
return Not-found

end function

FFF

Exercise 157
Consider a traditional hash table of size t to store s <key,value> elements.

1. Define the concept of “hash function” and describe its properties.

2. Describe how an insertion is performed.

3. Describe how a lookup is performed.

4. Evaluate the expected lookup time.

5. Evaluate the worst case lookup time.

6. Show an example of insertion of 10 elements when t = 5.

7. Is it possible to devise an enhanced version of hash table with better worst case lookup
time? If yes, how?

FFF

Exercise 158
Consider the adoption of the fingerprinting scheme in data storage system.

1. Describe how fingerprinting works.

2. Describe the problem of false positives.

3. Describe how deletion is supported.

4. Compute analytically the minimum number of bit per fingerprint to achieve a probability
of false positive equal to ε. Define every notation adopted in the proof and explain all the
steps.

5. Assume to store 1000 elements in a bit array with fingerprinting. What is the size of the
storage to achieve a probability of false positive equal to 10−6?

FFF

Solution:
5. As a result of the formula achieved in question 4, the total number of bits per fingerprint

is b = log2(m/ε) where m = 103 and ε = 10−6, thus b = log2(109) = 3 log2(1000) ≈ 30 bits per
fingerprint. Thus, the total memory size for the bit array is 109 bits, equivalent to 125 MB.

104

Exercise 159
Consider an Internet traffic monitoring system based on a b-bit fingerprint F (x) for flow
x, adopting a bit string hash for the storage. The flow is identified by the couple x =
(IPsource, IPdestination). Answer to the following question:

1. What is the total amount of memory (in kbytes) required for storage in the case b = 32
after 1, 000 flows have been inserted?

2. Describe a possible fingerprint function when b = 32

3. Prove the formula to compute the probability of false positive in function of b and of the
number k of inserted flows

4. What would be the minimum value of b to guarantee a probability of false positive less
than ε?

5. Is there any case in which the bit string array shows a null probability of false positive?

6. Show the pseudocode to insert a generic flow x into the monitoring system, after defining
properly all the involved data structures.

7. Show the pseudocode to search a generic flow x

8. Show the pseudocode to delete a generic flow x

9. Does the considered monitoring system supports correctly the deletion operation? Why?

Solution:

1. The bit string hash requires 2b bits, independently from the stored elements. In the
considered case, around 4 Gbit (≈ 500 Mbytes) are required.

2. A possible hash function can be obtained by the EXOR between the source and destina-
tion IP address: F (x) = IPsource ⊕ IPdestination.

3. The probability that a specific bit in the bit array equals to one when adding a flow is
p = 1/2b. Consider now a flow y which has not been inserted before. Now the probability
that F (y) 6= F (x) for any x already inserted is (1 − p)k. Thus, the probability of false
positive is

Pr(false positive) = 1−
(

1− 1

2b

)k
≈ 1− e−

k

2b

4. By setting Pr(false positive) < ε, after some simple steps, we get

b > log2
k

− log2(1− ε)

5. Only when no element has been inserted in the bit array, the probability of false positive
is null.

6. Let BSA be the string array with 2b bits, and BSA[i] ∈ {0, 1} be the
ith bit in the data structure. Let F (x) be the fingerprint of flow x.

function INSERT(x)
BSA[F (x)] = 1

end function

105

7.

function SEARCH(x)
if BSA[F (x)] = 1 then

return FOUND
else

return NOT FOUND
end if

end function

8.
function DELETE(x)

BSA[F (x)] = 0

end function

9. If the deletion operation occurs, then the bit string array can introduce false negatives
and thus the deletion must not be supported.

FFF

Exercise 160
Consider an intrusion detection system that stores all the source IP addresses observed
at the network interface of a router, using a table implemented with a simple vector ar-
ray. A fingerprinting scheme is adopted. Let x = a.b.c.d be an IP address expressed
with the canonical representation with four decimal digits; the corresponding fingerprint is
F (x) = (a+ b+ c+ d) modulus 16.

1. Consider the sequence of operations in the above table. For each operation, show the
content of table T and the probability of false positive after the operation. Assume the
table initially empty: T = {}.

Time Operation Table T Prob. false positive
1 insert(1.2.3.4)
2 insert(2.3.4.5)
3 insert(2.3.4.1)
4 insert(3.4.5.2)
5 delete(1.2.3.4)
6 delete(2.3.4.1)
7 delete(3.4.5.2)
8 delete(2.3.4.5)

2. In the above sequence of operations, add at some time an operation for which a false
positive event occurs.

3. Assume that k IP addresses are stored exploiting fingerprints of b bits. What is the total
required storage in terms of bits? What is the final probability of false positives?

4. Assume that k IP addresses are stored directly in the table without fingerprinting. Com-
pare this solution with the one adopting fingerprinting in terms of storage requirement
and probability of false positives.

5. Show the pseudo-code to insert, delete and search an element in a table exploiting fin-
gerprinting.

Solution:

1. The evolution of the table is reported below. Note that multiple copies of the same finger-
print must be stored to support deletion.

106

Time Operation Table T Prob. false positive
1 insert(1.2.3.4) {10} 1/16
2 insert(2.3.4.5) {10, 14} 1/8
3 insert(2.3.4.1) {10, 10, 14} 1/8
4 insert(3.4.5.2) {10, 10, 14, 14} 1/8
5 delete(1.2.3.4) {10, 14, 14} 1/8
6 delete(2.3.4.1) {14, 14} 1/16
7 delete(3.4.5.2) {14} 1/16
8 delete(2.3.4.5) {} 0

2. E.g., Search(2.1.4.3) at time 1.5 or Search(1.2.3.4) at time 5.5 would lead to a false
positive event.

3. The total storage is bk bits.The final probability of false positives is

1−
(

1− 1

2b

)k
4. Without fingerprinting, each IP address is represented with 32 bits. Thus the storage

requirement is 32k bits in total. Note that this data structure avoids false positive events,
but requires a larger storage which is 32/k-times the one with fingerprinting (assuming
b < 32).

5. Assume that the size of the vector array T is n. Assume that all the entries in T have
been initialized to −1 as default value.

function INSERT(x)
for i = 1→ n do

if T [i] = −1 then
T [i] = F (x)
return OK

end if
end for
return ERROR FULL TABLE

end function

function FIND-ELEMENT(x)
for i = 1→ n do

if T [i] = F (x) then
return FOUND

end if
end for
return NOT FOUND

end function

function DELETE-ELEMENT(x)
for i = 1→ n do

if T [i] = F (x) then
T [i] = −1
return OK

end if
end for
return ERROR NOT FOUND

end function

107

FFF

Exercise 161
Consider a flow-monitor tool that stores all the active flows using a table implemented with
a simple vector array. A fingerprint scheme is adopted to map any flow to an integer in the
interval [0, 1023]; the fingerprint is designed to identify flows independently from their direction,
i.e. the two flows of a bidirectional communication are identified by the same value. Let a flow
f be defined in terms of a 4-uple with the notation reported in the following table:

Source IP address x1.x2.x3.x4
Destination IP address y1.y2.y3.y4
Layer-4 source port px
Layer-4 destination port py

1. Design a fingerprint scheme F (f) that satisfies all the design constraints above and able
to deal also with flows without any layer-4 port.

2. Consider the sequence of operations in the above table. For each operation, show the
content of table T and the probability of false positive after the operation. Assume the
table initially empty: T = {}.

Time Operation Table T Prob. false positive
1 insert(1.2.3.4, 5.6.7.8, 1, 2)
2 insert(2.3.4.5, 6.7.8.9, 3, 4)
3 insert(2.3.4.5, 9.8.7.6, 5, 2)
4 insert(3.4.0.3, 5.7.9.5, 2, 1)
5 delete(1.2.3.4, 5.6.7.8, 1, 2)
6 delete(2.3.4.5, 9.8.7.6, 5, 2)
7 delete(3.4.0.3, 5.7.9.5, 2, 1)
8 delete(2.3.4.5, 6.7.8.9, 3, 4)

3. In the above sequence of operations, add an operation at some specific time t ∈ [0, 10]
for which a false positive event occurs. Note that the false positive can occur for other
values of t. What is the largest time interval during which the false positive would occur?

4. Show the pseudo-code to insert, delete and search an element in a table exploiting fin-
gerprinting.

Solution:

1. The fingerprint can be defined as follows:

F (f) = (x1 + x2 + x3 + x4 + y1 + y2 + y3 + y4 + px + py) mod 1024

where px = py = 65, 536 whenever layer-4 port is not defined.

2. Thus the evolution of the hash table is the following:

Time Operation Table T Prob. false positive
1 insert(1.2.3.4, 5.6.7.8, 1, 2) {39} 1/1024
2 insert(2.3.4.5, 6.7.8.9, 3, 4) {39, 51} 2/1024
3 insert(2.3.4.5, 9.8.7.6, 5, 2) {39, 51, 51} 2/1024
4 insert(3.4.0.3, 5.7.9.5, 2, 1) {39, 39, 51, 51} 2/1024
5 delete(1.2.3.4, 5.6.7.8, 1, 2) {39, 51, 51} 2/1024
6 delete(2.3.4.5, 9.8.7.6, 5, 2) {39, 51} 2/1024
7 delete(3.4.0.3, 5.7.9.5, 2, 1) {51} 1/1024
8 delete(2.3.4.5, 6.7.8.9, 3, 4) {} 0

108

3. E.g., Search(2.3.0.9, 10.7.0.1, 10, 9) during any time t ∈ (2, 8) would lead to a false
positive.

4. See the solution of point 5 of Ex. 160.

5.2 Bloom filters
Exercise 162
Consider a Bloom filter of 10 bits and 3 hash functions.

1. Which kind of data structure does the Bloom filter implement?

2. Describe some possible scenarios in networks where bloom filters are adopted.

3. Write in pseudocode the operations of “write” and “read” in a bloom filter.

4. Show an example of “false positive” event.

FFF

Exercise 163
Consider a Bloom filter with 106 bits available for storage and 3 hash functions.

1. Describe which data structure a Bloom filter implements.

2. Describe some possible scenarios in networks where bloom filters are adopted.

3. Write in the pseudocode the operations of “write” and “search” in such bloom filter.

4. Define the probability of false positive.

5. Write the formula of the probability of false positive for the specific Bloom filter above.

FFF

Exercise 164
Consider a Bloom filter with 800 kbits available for storage and 4 hash functions.

1. Describe which data structure a Bloom filter implements.

2. Describe some possible scenarios in networks where bloom filters are adopted.

3. Write in the pseudocode the operations of “write” and “search” in such bloom filter.

4. Define the probability of false positive.

5. Consider the probability of false positive shown in Fig. 5.1. After having defined k, n and
m, explain the meaning of the graph applied to the specific Bloom filter considered in the
question.

Solution:
For the first four questions, refer to the class notes.
Regarding question 5, let k be the number of hash functions, n be the memory size and m

be the number of elements already stored in the Bloom filter.
In this specific filter considered in the question, k = 4 and n = 800 kbit. Thus, Fig. 5.1

shows that

• after inserting m = 1 105 elements (i.e., n = 8m), the probability of false positive is 0.023;

109

 0.01

 0.1

 1

 1 2 3 4 5 6 7 8 9 10 20

P
r(

fa
ls

e
 p

o
s
it
iv

e
)

k

n=m
n=2*m
n=4*m
n=8*m

Figure 5.1: Probability of false positive (Ex. 164)
.

• after inserting m = 2 105 elements (i.e., n = 4m), the probability of false positive is 0.16;

• after inserting m = 4 105 elements (i.e., n = 2m), the probability of false positive is 0.56;

• after inserting m = 8 105 elements (i.e., n = m), the probability of false positive is 0.93.

Thus, after storing 100 thousands elements in the Bloom filter, the probability of false positive
starts to become relatively large (i.e., approximatively larger than 0.1).

FFF

Exercise 165
Consider a network monitoring application that stores the connection identifiers of all UDP and
TCP flows that have been observed in a particular network probe. Assume that the maximum
number of flows to track is 1024.

1. Define the exact and the approximated set membership problem for this particular prob-
lem.

2. Discuss a data storage solution that solves the exact problem.

3. Discuss a data storage solution that solves the approximated problem with bit string
hashing.

4. Compare the two solutions.

FFF

Exercise 166
Consider a YouTube monitoring system, based on a memory of 10 kbytes, which stores the IP
addresses of the YouTube users. At a particular time, around 4, 000 flows have been stored.
Assume that the memory implements either (i) a Bloom filter, (ii) a bit string hash.

In the case of a Bloom filter:

1. How does the filter work?

110

1.0e-09

1.0e-08

1.0e-07

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

P
r(

fa
ls

e
 p

o
s
it
iv

e
)

n/m

Figure 5.2: Probability of false positive in a bloom filter

2. Write in pseudocode the operations of “add” and “search” in such bloom filter.

3. What is the probability of false positive? Consider the performance shown in Fig. 5.2.

In the case of a bit string hash:

1. How does the hash work?

2. Show analytically what is the minimum number of bits per fingerprint to achieve a very
small false positive probability.

3. What is the probability of false positive? Is it better or worse than the one achieved by
the Bloom filter?

Solution:
The bloom filter uses k hash functions to store a given element x in a bit string of size n.

Assume that BF is a bit array initialized to 0: BF (i) = 0 for all i = 1, . . . , n. Assume that we
have k hash functions h1(x), . . . , hk(x).

To add an element x:
function ADD(x)

for i = 1→ k do
BF (hi(x))← 1

end for
end function

To check whether an element x is present:
function SEARCH(x)

for i = 1→ k do
if BF (hi(x)) == 0 then

return false
end if

end for
return true

end function
In the considered scenario, the size of the bit array is n = 80, 000 bits whereas the number

of elements is m = 4, 000. Assuming the optimal number of hash functions, from the graph the
probability of false positive is less than 10−4.

111

In the second case, the bit string hash uses just one hash function to store the element
into a fingerprint table. When adding a new element x, the corresponding fingerprint h(x)
is stored in the table. To check whether an element x is present, the corresponding h(x) is
searched within the table. To optimize such procedure, usually a binary search or an hash
table is adopted.

Assume that b is the number of bit for each fingerprint, i.e. h(x) ∈ [0, . . . , 2b − 1]. It is
possible to show that b must be at least Ω(logm) to get a probability of false positive < ε.
When b = 2 log2m,

Pr(false positive) = 1−
(

1− 1

m2

)m
≈ 1− (e−1/m

2
)m = 1− e−1/m

which can be approximated by 1/m. In the considered scenario, the probability of false positive
is 1/4000 = 2.5 10−4 which is larger than the case obtained with a Bloom filter.

FFF

Exercise 167
Assume a Bloom filter with 10 bits used to store integer numbers. The filter uses the following
three hash functions: h1(x) = x mod 10 , h2(x) = (x + 4) mod 10, h3(x) = floor(log10 x),
where mod is the modulo operator.

1. Are these 3 hash functions “good” for the considered Bloom filter? Why?

2. Add the following values, showing the state of the Bloom filter after each insertion: 10001,
2007, 35.

3. Which operation (if any) would lead to a false positive event for the above Bloom filter,
after the 3 insertions?

4. Which operation (if any) would lead to a false negative event for the above Bloom filter,
after the 3 insertions?

5. Explain with an example why the deletion is not allowed in the above Bloom filter, after
the 3 insertions.

Solution:

1. h1(x) and h2(x) are not independent, so the two hash functions perform poorly for a
Bloom filter

2. after inserting 10001, BF = [0100110000]; after inserting 2007, BF = [0101110100]; after
inserting 35, BF = [0101110101].

3. search(11) will lead to a false positive

4. delete(35) and then search(10001) would lead to a false negative, thus deletion is not
allowed

5. see above

FFF

Exercise 168
Consider a caching scheme that adopts a Bloom filter to track the content stored in a cache.
The bloom filter is implemented in a fast memory of 100 kbytes and must ensure a probability
of false positive less than 10−4. Consider the performance shown in Fig. 5.2.

112

1. How does the filter work?

2. Write in pseudocode the operations of “add” and “search” in such bloom filter.

3. What are the consequences of a false positive event in the considered caching scheme?

4. What is the maximum number of contents that can be inserted in the bloom filter (i.e.,
stored in the cache), without violating the probability of false positive?

Solution: The problem is almost identical to Ex. 166.
To ensure the probability of false positive less than 10−4, it must be n/m ≥ 20. In this

scenario, n = 8 105 bit, thus m ≤ n/20 = 40, 000, i.e. the maximum number of contents that
can be stored is 40, 000.

FFF

Exercise 169
Consider a network security system, based on a memory of 10 Mbytes, which stores a white
list of IP addresses that are allowed to communicate in the network. Assume that the memory
implements a Bloom filter, designed to keep the probability of false positive less than 10−6.
Consider the performance shown in Fig. 5.2.

1. How does the filter work?

2. Write in pseudocode the operations of “add” and “search” in such bloom filter.

3. What are the consequences of a false positive event in the considered network security
system?

4. What is the maximum number of IP addresses that can be stored in the whitelist, without
violating the probability of false positive?

Solution:
The problem is almost identical to Ex. 166.
From the graph, n/m = 29 to ensure the requested false positive probability. Since the

storage is n = 80 Mbits, then the maximum number of IP addresses that can be stored is
80 106/29 ≈ 2.7 106.

5.3 Cuckoo filters
Exercise 170 (out of scope for the program 2021/22)
Consider a Cuckoo filter.

1. What is the purpose of it?

2. Describe some application scenario.

3. Explain the main ideas exploited to design it.

4. What are the properties of the adopted hash function/s?

5. Show an example of insertion of 6 elements into a Cuckoo filter based on a table with 4
rows and 2 columns.

6. Describe how the deletion works.

7. Describe the advantages and disadvantages of Cuckoo filters with respect to Bloom fil-
ters.

113

FFF

Exercise 171 (out of scope for the program 2021/22)
1. Consider a Cuckoo hash:

(a) What is its purpose?

(b) How does it work?

(c) Show an example of element relocation.

2. Consider a Cuckoo filter:

(a) What is its purpose?

(b) How does it work?

(c) What is the difference between a Cuckoo hash and a Cuckoo filter?

114

	Interconnection networks
	Clos networks
	Recursive construction
	Non-interruptible networks

	Benes networks
	Banyan networks
	Cantor networks
	Comparison among networks
	Lee method
	Space-time switching

	Data centers
	Cloud computing
	Design of data center networks

	Packet switches
	Theoretical performance
	Bufferless switches
	Input queued switch with single FIFO
	Generic switches with input and/or output queueing

	Packet Scheduling in Input Queued Switches
	Scheduling algorithms for unicast traffic
	Scheduling algorithms for variable size packets
	Scheduling algorithms for QoS support
	Scheduling algorithms for multicast traffic

	Fast packet classification and SDN
	Lookup tables for packet forwarding
	Software Defined Networking

	Probabilistic data structures
	Hash tables and fingerprinting
	Bloom filters
	Cuckoo filters

