
February 8th, 2017
Exam of Switching technologies for data centers (2016/17)

Rules for the exam. It is forbidden to use notes, books or calculators. Use only draft paper provided by the professor.
When needed, use approximations.
Time available: 70 minutes.

Problem A
Consider a Top-of-Rack switch with 42 ports, in which 4 ports (denoted as “gold” ports) are adopted to connect to the
spine switches and the remaining ports are devoted to the interconnection of the servers within the rack. A QoS policy
assures that all the traffic that is directed to any gold port or is received by any gold port must be transferred at the highest
priority with respect to the remaining traffic.
Assume now that the traffic is only unicast and the switch is implemented through an input queued architecture with
Virtual Output Queueing. The scheduler is maximal and implements a strict priority policy on the gold ports.

• Define and describe all the data structures required to define and solve the scheduling problem.

• Describe in pseudocode the scheduling algorithm.

• Discuss the expected performance in terms of throughput and delays, under a generic traffic pattern.

1

Problem B
Consider the design of a massively large data center based only on Ethernet switches, assuming an oversubscription ratio
4 : 1 between server capacity and network capacity. All the adopted switches are equipped with 50 ports running at
1 Gbps. Each server is equipped with one port running at 1 Gbps.

1. For each of the following design problems, draw at high-level the network, compute the required number of switches
and the maximum number of supported servers:

(a) Design the largest possible 2-levels (leaf-and-spine) data center.

(b) Design the largest possible 2-levels (leaf-and-spine) POD.

(c) Design the largest possible 3-levels (POD-and-spine) data center.

(d) Design the largest possible 3-levels (POD-and-spine) POD.

(e) Design the largest possible 4-levels (POD-and-spine) data center.

2. Discuss how this design is similar to Google’s Jupiter data centers.

3. Describe the advantages and disadvantages to adopt a layer-2 addressing and routing scheme if adopted for the
above 4-levels data center.

2

Problem C
Consider the new network paradigm denoted as “Software Defined Networking” (SDN).

1. What is the main difference with the traditional Internet architecture?

2. What is a SDN controller? How can its API interfaces be classified?

3. What is Openflow?

4. How is a flow table defined in Openflow?

5. What are the main messages defined in Openflow and what are their purposes?

6. What are the main consequences of Openflow on the design of the switching architectures?

3

Hints for the solution

Problem A

1 void scheduler(int **X, int NUM_PORTS, int NUM_GOLD_PORTS) {
2 // X is matrix of size NUM_PORTS*NUM_PORTS; X[in][out]=queue length for VOQ[in][out]
3 // gold ports are NUM_GOLD_PORTS and correspond to the first NUM_GOLD_PORTS ports of the switch
4

5 int in,out;
6 int matching[NUM_PORTS]; // matching[in]=out, otherwise -1
7 bool out_reserved[NUM_PORTS],in_reserved[NUM_PORTS]; // boolean reservation vectors
8

9 // init matching and reservation vectors
10 for (in=0; in<NUM_PORTS; in++) {
11 matching[in]=-1;
12 out_reserved[in]=in_reserved[in]=false;
13 }
14 // Step 1: match gold input ports to any output port
15 for (in=0; in<NUM_GOLD_PORTS; in++) {
16 for (out=0; out<NUM_PORTS; out++) {
17 if (out_reserved[out]) { // skip already reserved outputs
18 continue;
19 }
20 if (X[in][out]>0) {
21 // if the VOQ is non empty, store the matching and reserve the inputs and outputs
22 matching[in]=out; out_reserved[out]=in_reserved[in]=true;
23 break;
24 }
25 }
26 }
27 // Step 2: match gold output ports to any input port
28 for (out=0; out<NUM_GOLD_PORTS; out++) {
29 if (out_reserved[out]) { // skip already reserved outputs
30 continue;
31 }
32 for (in=0; in<IN_PORTS; in++) {
33 if (in_reserved[in]) { // skip already reserved inputs
34 continue;
35 }
36 if (X[in][out]>0) {
37 // if the VOQ is non empty, store the matching and reserve the inputs and outputs
38 matching[in]=out; out_reserved[out]=in_reserved[in]=true;
39 break;
40 }
41 }
42 }
43 // Step 3: match remaining ports
44 for (in=NUM_GOLD_PORTS; in<NUM_PORTS; in++) {
45 if (in_reserved[in]) { // skip already reserved inputs
46 continue;
47 }
48 for (out=NUM_GOLD_PORTS; out<NUM_PORTS; out++) {
49 if (out_reserved[out]) { // skip already reserved outputs
50 continue;
51 }
52 if (X[in][out]>0) {
53 // if the VOQ is non empty, store the matching and reserve the inputs and outputs
54 matching[in]=out; out_reserved[out]=in_reserved[in]=true;
55 break;
56 }
57 }
58 }
59 // now matching contains the desired matching
60 }

4

Another possibility for the pseudocode:

1 void scheduler(int **X, int NUM_PORTS, int NUM_GOLD_PORTS) {
2 // X is matrix of size NUM_PORTS*NUM_PORTS; X[in][out]=queue length for VOQ[in][out]
3 // gold ports are NUM_GOLD_PORTS and correspond to the first NUM_GOLD_PORTS ports of the switch
4

5 int in,out;
6 int matching[NUM_PORTS]; // matching[in]=out, otherwise -1
7 bool out_reserved[NUM_PORTS],in_reserved[NUM_PORTS]; // boolean reservation vectors
8

9 // init matching and reservation vectors
10 for (in=0; in<NUM_PORTS; in++) {
11 matching[in]=-1;
12 out_reserved[in]=in_reserved[in]=false;
13 }
14 // Step 1: match gold input or ports
15 for (in=0; in<NUM_PORTS; in++) {
16 for (out=0; out<NUM_PORTS; out++) {
17 // check if the input or the output port is a gold port
18 if (in<NUM_GOLD_PORTS OR out<NUM_GOLD_PORTS) {
19 // check if the VOQ is not empty the the output is available
20 if (X[in][out]>0 AND !out_reserved[out]) {
21 // store the matching and reserve both the inputs and outputs
22 matching[in]=out; out_reserved[out]=in_reserved[in]=true;
23 break; // consider a new input
24 }
25 }
26 }
27 // Step 2: match all the remaining ports
28 for (in=0; in<NUM_PORTS; in++) {
29 if (in_reserved[in]) { // skip already reserved input
30 continue;
31 }
32 for (out=0; out<NUM_PORTS; out++) {
33 // check if the VOQ is not empty the output is available
34 if (X[in][out]>0 AND !out_reserved[out]) {
35 // store the matching and reserve both the inputs and outputs
36 matching[in]=out; out_reserved[out]=in_reserved[in]=true;
37 break; // consider a new input
38 }
39 }
40 }
41 // now matching contains the desired matching
42 }

5

Problem B

Network Servers Spine ports Switches Layout

2-levels data center 40× 50 = 2, 000 - 50 + 10 = 60

40 10 50

1050

2-levels POD 40× 25 = 1, 000 25× 10 = 250 10 + 25 = 35

40 10

10

25 25

25

3-levels data center 1000× 50 = 50, 000 - 50× 35 + 250 = 2, 000

1000 250 50

25050

3-levels POD 1000× 25 = 25, 000 25× 250 = 6, 250 25× 35 + 250 = 1, 125

1000 250 25

25 250

25

4-levels data center 25, 000× 50 = 1, 250, 000 - 50× 1, 125 + 6250 = 62, 500

25000 6250 50

50 6250

6

