September 3rd, 2018

Exam of Switching technologies for data centers (2017/18)

Rules for the exam. It is **forbidden** to use notes, books or calculators. Use only draft paper provided by the professor. When needed, use approximations. The answers must be provided in correct English. Any notation must be defined. **Time available: 70 minutes**.

Problem A

Consider the design of Jupiter data center at Google, based on a basic building block implemented with a chipset with 16 ports at 40 Gbps. The adopted oversubscription ratio is 3:1. Each server is equipped with a single port running at 10 Gbps. Draw the architecture and compute the total number of servers and basic building blocks (i.e., chipsets) for each of the following scenarios:

- 1. 2-layers topology;
- 2. 2-layers POD;
- 3. 3-layers topology;
- 4. 3-layers POD;
- 5. 4-layers topology.

Finally, describe for the 4-layers topology all the possible ways to interconnect the data center to the Internet.

Problem B

Consider a traditional hash table with H buckets to store $\langle key, value \rangle$ elements.

- 1. Define the concept of "hash function" and describe its properties.
- 2. Explain the two main relevant results regarding random policies for bins-and-balls models, describing all the involved assumptions.
- 3. Describe two different ways to implement hash tables that exploit the above two results.
- 4. For each of the two implementations:
 - (a) Describe in pseudocode the insertion of an element; for simplicity, assume that the key does not appear already in the hash.
 - (b) Describe in pseudocode the lookup of an element.
 - (c) Evaluate the expected lookup time.
 - (d) Evaluate the worst case lookup time.
 - (e) Show an example of insertion of 12 elements when H = 4.

Problem C

Design an 8×8 Benes network. Connect the following input-output couples: $1 \rightarrow 8, 2 \rightarrow 6, 3 \rightarrow 7, 4 \rightarrow 3, 5 \rightarrow 4, 6 \rightarrow 2, 8 \rightarrow 1.$

- 1. Draw the complete network, showing all the recursively-built modules.
- 2. Use the looping algorithm to configure the network. Show graphically the used loops, assuming that the inputs are always considered in increasing sequence.
- 3. Show the final configuration of the network, after running the looping algorithm.

Hints for the solution

Problem A

See the class notes.

Problem B

See the solution of problem 132.

Problem C

See the solution of problem 32.