March 3rd, 2017

Exam of Switching technologies for data centers (2016/17)

Rules for the exam. It is **forbidden** to use notes, books or calculators. Use only draft paper provided by the professor. When needed, use approximations. The answers must be provided in correct English. Any notation must be defined. **Time available: 70 minutes**.

Problem A

Consider a $N \times (N/2)$ rearrangeable switch, acting as concentrator, built with 2×2 basic modules, exploiting recursive factorization. Assume $N = 2^h$, for some positive integer $h \ge 2$.

- 1. Consider a first architecture with recursive factorization.
 - (a) Compute the total number of basic modules, showing all the steps to solve the corresponding recursive equation.
 - (b) Draw the complete network topology for a 8×4 switch and compute the total number of basic modules.
 - (c) Can Paul and looping algorithms be used to configure the network? Why?
- 2. Consider a second architecture built by designing a symmetric $N \times N$ Benes network and then removing the useless modules starting from at the last stage.
 - (a) Compute the total number of basic modules (starting from the formula for Benes networks).
 - (b) Draw the complete network topology for a 8×4 switch and compute the total number of modules.
 - (c) Can Paul and looping algorithms be used to configure the network? Why?
- 3. What is the best among the two architectures?

Problem B

Consider a traditional hash table with H buckets to store $\langle key, value \rangle$ elements.

- 1. Define the concept of "hash function" and describe its properties.
- 2. Explain the two main relevant results regarding random policies for bins-and-balls models, describing all the involved assumptions.
- 3. Describe two different ways to implement hash tables that exploit the above two results.
- 4. For each of the two implementations:
 - (a) Describe in pseudocode the insertion of an element; for simplicity, assume that the key does not appear already in the hash.
 - (b) Describe in pseudocode the lookup of an element.
 - (c) Evaluate the expected lookup time.
 - (d) Evaluate the worst case lookup time.
 - (e) Show an example of insertion of 12 elements when H = 4.

Problem C

Consider a 4×4 input queued switch with virtual output queues (VOQs), with each port running at 10 Gbps. Assume that the internal timeslot corresponds to a 64 bytes packet. The following rate matrix must be guaranteed:

$$\hat{R} = \begin{vmatrix} 1 & 2 & 1 & 4 \\ 2 & 4 & 1 & 1 \\ 4 & 1 & 2 & 1 \\ 1 & 1 & 4 & 2 \end{vmatrix}$$
Gbps

- 1. Find the frame sequence F, using Paul algorithm.
- 2. What are the admissibility conditions for the traffic to achieve the maximum throughput?
- 3. What is the minimum worst-case access delay and the corresponding VOQs?
- 4. What is the maximum worst-case access delay and the corresponding VOQs?

Hints for the solution

Problem A

The problem is almost identical to ex. 33. In addition:

1.(b) Using recursive constructions, the 8×4 switch has complexity: $C(8,4) = 6C_2 + 2C(4,2) = (6+2\times5)C_2 = 16C_2$. The corresponding network is:

Note that, using a simpler construction, $C(4, 2) = 3C_2$ and thus $C(8, 4) = 6C_2 + 2C(4, 2) = (6 + 2 \times 3)C_2 = 12C_2$. The corresponding network is:

2.(c) Using a 8×8 Benes network and removing 4 useless modules (shown as dotted), we obtain the following architecture, whose total complexity is $16C_2$. Thus, the complexity is equivalent to the first architecture.

Problem B

See the class notes. In addition:

Let h(k) and g(k) be two hash functions that map a key k into the interval [1, H]. Let $T = [T_i]_{i=1}^H$ be a table with H buckets, in which T_i is bucket i.

• For traditional hash tables:

function INSERT (k, v)	$\triangleright k$ is the key and v is the value
Add (k, v) in $T_{h(k)}$	▷ Add the element
end function	
	. 1 1 . 1
function LOOKUP (k)	$\triangleright k$ is the key
for each $(k', v') \in T_{h(k)}$ do	\triangleright Check bucket $h(k)$
if $k = k'$ then	\triangleright Key k found
return v'	
end if	
end for	
return Not-found	
end function	
For multiple-choice hash tables:	
function INSERT (k, y)	$\triangleright k$ is the key and v is the value
$ \mathbf{f} T_{i}(x) \leq T_{i}(x) $ then	\triangleright Find the smallest bucket
$\Delta dd (k, v) in T_{i} (v)$	\wedge Add the element
Add (k, ℓ) in $I_{h(k)}$	V Add the clement
$\int dd (h a) in T$	Add the element
Add $(k, v) $ If $I_{g(k)}$	> Add the element
end function	
function LOOKUP(<i>k</i>)	$\triangleright k$ is the key
for each $(k', v') \in T_{h(k)}$ do	\triangleright Check first bucket $h(k)$
if $k = k'$ then	\triangleright Kev k found
return v'	
end if	
end for	
for each $(k', v') \in T_{(k)}$ do	\triangleright Check second bucket $a(k)$
if $k = k'$ then	\triangleright Key k found
return v'	
and if	
enu n ond for	
end for	
return Not-Iouna	

Problem C

end function

1. Using Paul algorithm, a possible frame of 8 timeslots $F = [M_i]_{i=1}^8$ is the following:

$$M_{1} = M_{2} = M_{3} = M_{4} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad M_{5} = M_{6} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad M_{7} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \qquad M_{8} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

2. The traffic matrix Λ to be admissile and achieve the maximum throughput must satisfy:

$$\Lambda \leq \hat{R}/8 \times 10 = \begin{bmatrix} 1.25 & 2.50 & 1.25 & 5.00 \\ 2.50 & 5.00 & 1.25 & 1.25 \\ 5.00 & 1.25 & 2.50 & 1.25 \\ 1.25 & 1.25 & 5.00 & 2.50 \end{bmatrix}$$
 Gbps

- 3. According to F, all the VOQs corresponding to M_1 experience a worst-case access delay equal to 5 timeslots, which is the minimum among all the VOQs.
- 4. According to F, all the VOQs corresponding to M_7 and M_8 experience a worst-case access delay equal to 8 timeslots, which is the maximum among all the VOQs.