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Space switching

Section 1

Space switching
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Space switching

Introduction

Switching contexts

packet switching (as in the Internet)

circuit switching (as in the traditional telephone network)

Switching scenarios for different space scaling

among different processing modules inside a chip

among chips on the same linecard

among hosts in a layer-2 network (switch)

among servers in a data center

among networks in a layer-3 network (router)
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Space switching

Reference architecture for space switching

crossbar N ×M

each internal port may switch an aggregation of external ports
(line-grouping)

best performance

simple control

high implementation complexity

MN

M

N
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Space switching

Implementation complexity

number of basic switching modules

number of crosspoints

related to the number of logical gates and the
area on a chip
for crossbar: C (N ×M) = NM
for symmetric crossbar: C (N) = N2

many other cost functions, depending on the
particular technology used for implementation

scalability and modularity
power consumption
reliability
switch control and management
2D/3D layout
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Space switching

Performance

under admissible (i.e., non conflicting) switching requests (circuits or
packets)

non blocking: any input can be always connected to an idle output

strictly non blocking (SNB): any new connection does not change the
pre-existing connections
rearrangeable (REAR): any new connection may change some
pre-existing connections

crossbar is SNB by construction

SNB implies REAR but not viceversa
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Space switching

Space switching

Traffic support

Unicast
Multicast

Multistage networks

modules
stages

stagestage 

module

module

module

module
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Space switching

Full interconnections among stages

Two stage switch, with full interconnections among the I-stage
modules and the II-stage modules

Possible (equivalent) graphical descriptions:

3D layout

graph layout2D layout
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Lee’s method (not for 2021-22 academic year)

Section 2

Lee’s method (not for 2021-22 academic year)
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Lee’s method (not for 2021-22 academic year)

Lee’s method

approximated blocking analysis of multistage networks

assumptions:

traffic uniformly distributed among inputs and outputs
random routing policy to distribute uniformly the traffic across the
modules and links
independence of the busy state among all the links

evaluate the blocking probability “seen” by a new circuit to be
established, in function of the offered load
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Lee’s method (not for 2021-22 academic year)

Lee’s method

let ρ be the average load of each input (i.e., the fraction of time the
input is busy): ρ ∈ [0, 1]

let ρtot = Nρ be the total load to the switch: ρtot ∈ [0,N] Erlang

examples

in a 10× 10 telephone switch, each input receives 6 calls/hour and
each call lasts on average 3 minutes; then ρ = 0.3 and the total load is
ρtot = 3 Erlang
in a 10× 10 packet switch, with ports at 100 Mbps, each input receives
on average 103 pkt/s, each of size 1500 bytes; then

ρ = 1500×8×103
108 = 0.12 and ρtot = 1.2 Erlang
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Lee’s method (not for 2021-22 academic year)

Lee’s method for two stages

symmetric network, with N = pq ports

ρ is the average input load

1

qp

p

p

p

q

1

a

a =
ρN

q2
⇒ Pb = ρ

p

q

C = 2qN

Note that for ρ ≥ q

p
, Pb = 1.
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Lee’s method (not for 2021-22 academic year)

Lee’s method for two stages

symmetric network, with N = pq ports

ρ is the average input load

l multiple edges

l

a

a

1

qp

p

p

p

q

1

l

b

a =
ρN

lq2
, b = al ⇒ Pb =

(
ρ
p

lq

)l

C = 2lqN

Note that for ρ ≥ lq

p
, Pb = 1.
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Lee’s method (not for 2021-22 academic year)

Lee’s method for three stages

symmetric network, with N = pq ports

ρ is the average input load

1

r q

p

p

11

p

p

q r

a

a

b

br

a

a

c

a =
ρN

qr
, b = 1− (1− a)2 = 2a− a2, c = br = ar (2− a)r ⇒

Pb = ρr
[

2N

qr
− ρN2

q2r2

]r
C = 2rN + rq2

Note that for ρ ≥ r

p
, Pb = 1.
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Lee’s method (not for 2021-22 academic year)

Design comparison

N = 1024, ρ = 0.01
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Lee’s method (not for 2021-22 academic year)

Design comparison

N = 1024, ρ = 0.01
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Clos networks

Section 3

Clos networks
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Clos networks

Clos networks and derived networks

Clos network

strictly non blocking: Clos theorem
rearrangeable: Slepian Duguid theorem
Paull’s matrix and Paull’s algorithm

Recursive construction

Benes network (p = 2), looping algorithm
p =
√
N

Self routing

Banyan networks
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Clos networks

Clos networks

three stage networks

mi : number of inputs for modules at stage i
ni : number of outputs for modules at stage i
ri : number of modules at stage i
Mi = {1, 2, . . . , ri} is the set of modules identifiers belonging to i-th
stage

Exactly one link between two modules in successive stages

r1 = m2, r2 = n1 = m3, r3 = m2
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Clos networks

Clos network

N ×M Clos network with N = m1r1 and M = r3n3

m1 × n1 m2 × n2 m3 × n3

1

r1

1

r3r2

1

N M
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Clos networks

SNB Clos networks

Clos Theorem

A Clos network is SNB if and only if the number of second stage switches
r2 satisfies:

r2 ≥ m1 + n3 − 1

In particular, a symmetric network with m1 = n3 = n is SNB if and only if

r2 ≥ 2n − 1

Proof: Assume that module i of the I-stage should be connected to
module j of the III-stage. Hence, a new symbol should be added in Pij of
Paull’s matrix P. In the worst case, there are already m1 − 1 symbols in
the i-th row of P and n3 − 1 symbols in the j-th column. They are all
distinct. Hence, to find a new symbol available in the II-stage, it should be
r2 > (m1 − 1) + (n3 − 1) which implies r2 ≥ m1 + n3 − 1.
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Clos networks

Complexity of a SNB Clos network

consider a symmetric Clos
network, with m1 = n3 = p,
r1 = r3 = q with N = pq

thanks to Clos Theorem, the
smallest Clos network is built
with r2 = 2p − 1

1

q

1 1

N N

q × q

2p− 1

(2p− 1)× pp× (2p− 1)

q

Total complexity

CSNB(N) = qC (p× (2p− 1)) + (2p− 1)C (q× q) + qC ((2p− 1)× p) =

(2p − 1)(2pq + q2)

Approximated complexity (assume r2 = 2p):

CSNB(N) ≈ qC (p × (2p)) + 2pC (q × q) + qC ((2p)× p) = 4p2q + 2pq2
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Clos networks

Paull’s matrix

describes the state of the active interconnections present in a Clos
network (i.e., the switching configurations of all the II-stage modules)

Definition

matrix P = [Pij ] of size r1 × r3
Pij is a set of II-stage modules, i.e. Pij ⊆ M2

if k ∈ Pij means that II-stage module k is connected to I-stage module
i and III-stage module j
feasibility conditions

each row with at most m1 symbols
each column with at most n3 symbols
each element with at most min{m1, n3} symbols
each k ∈ M2 appears at most once for each row and for each column

Giaccone (Politecnico di Torino) Multistage switching fabrics Sept. 2021 24 / 49



Clos networks

Configuring a SNB Clos network

when an input of I-stage module i should be connected to an output
of III-stage module j , find any II-stage module k such that the
connections i → k and k → j are both free

such connection always exists thanks to the Clos theorem
in Paull’s matrix P, this operation corresponds to find any available
symbol in both i-th row and j-th column
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Clos networks

Rearrangeable non-blocking Clos networks

Slepian-Duguid Theorem

A Clos network is rearrangeable (REAR) if and only if the number of
second stage switches r2 satisfies:

r2 ≥ max{m1, n3}

In particular, a symmetric network with m1 = n3 = n is rearrangeable
(REAR) if and only

r2 ≥ n

Proof: It will be proved using the Birchkoff von Neumann theorem, later
in the course
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Clos networks

Complexity of a REAR Clos network

consider a symmetric Clos
network, with m1 = n3 = p,
r1 = r3 = q with N = pq

thanks to Slepian Duguid
Theorem, the smallest Clos
network is built with r2 = p

p× p

1

q

1

qp

1

N N

q × q p× p

Total complexity

CREAR(N) = qC (p × p) + pC (q × q) + qC (p × p) = 2qp2 + pq2
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Clos networks

Clos complexity comparison

By setting q = N/p in the formulas of the Clos networks complexity:

CSNB = (2p − 1)

(
2N +

N2

p2

)
≈ 4pN +

2

p
N2

CREARR = 2pN +
1

p
N2

and hence,

CSNB(N) =
2p − 1

p
CREAR(N)

which means:
CREAR(N) ≤ CSNB(N) < 2CREAR(N)

Note that, to be advantageous with respect to the crossbar, it should be:

CREAR(N) < N2 CSNB(N) < N2
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Clos networks

Clos complexity comparison
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Clos networks

Clos complexity comparison

 0

 0.5

 1

 1.5

 2

 1  10  100  1000  10000

C
S

N
B
/C

R
E

A
R

R

p

N=10
N=100

N=1000
N=10000

Giaccone (Politecnico di Torino) Multistage switching fabrics Sept. 2021 30 / 49



Clos networks

Minimum complexity for REARR Clos network

minimum of CREARR obtained for p̂:

∂CREARR

∂p
= 2N − N2

p2
= 0 ⇒ p̂ =

√
N

2

Hence, the minimum complexity is:

C opt
REARR = 2

√
2N
√
N = Θ(N

√
N)

for any N > 8, C opt
REARR < Ccrossbar = N2

for p = 1, the Clos network degenerates into a N × N crossbar;
CREAR(p = 1) = N2

for p = N, the Clos network degenerates into two tandem N × N
crossbars; CREAR(p = N) = 2N2
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Clos networks

Configuring a REAR Clos network

Paull’s algorithm

incremental algorithm, used to add one connection at one time and
reconfigure the network if needed

will be also used to support rate guarantees in input queued switches

(Paull’s Theorem) for each new connection, the number of
connections needed to be rearranged is at most min{r1, r3} − 1

for each new connection, the number of II-stage modules to
reconfigure is at most two
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Clos networks

Paull’s algorithm

Given Paull’s matrix P = [Pij ] and a new connection to add in Pij ;
two cases are possible

it exists a II-stage module a which is available in both row i and
column j of P; hence, use module a for the new connection, without
any rearrangment: Pij = Pij ∪ a
otherwise, there should be two II-stage modules a and b such that a is
available in row i , and b is available in column j of P. Find an
(a, b)-path (or a (b, a)-path) starting from Pij . Now swap a with b in
such path, and use a (or a b for the (b, a)-path) for the new
connection: Pij = Pij ∪ a.

or

(a,b)−path

(b,a)−path

?

b

b

b

b

b

b

b

b

b

b

b

a

a

a

a

a

a

a

a

a

a

a

a
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Benes networks

Section 4

Benes networks
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Benes networks

Recursive construction

main idea to exploit recursively

to build a REAR Clos network, use a REAR Clos network for each
module
to build a SNB Clos network, use a SNB Clos network for each module

many ways to factorize the network

for small complexity, keep small p

CREAR(N) = 2qp2 + pq2 CSNB(N) = (2p − 1)q(2p + q)

CREAR(N, p = 2) = N2/2+4N vs. CSNB(N, p = 2) = 3N2/4+6N

for keeping the same “aspect ratio”, use p =
√
N
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Benes networks

Benes network

Clos network, REAR, recursively factorized with p = 2, exploiting only
2× 2 modules

N = 2n for some n

N
N

11

N/2 N/2

N/2 x N/2

N/2 x N/2
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Benes networks

Example of Benes networks

8x8

16x16

4x4
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Benes networks

Benes network complexity

The number of crosspoints satisfies:

C (N) = NC2+2C

(
N

2

)
= kNC2+2kC

(
N

2k

)
for k = 0, . . . , log2N−1

Now, by setting k = log2N − 1 and considering C2 = 4:

C (N) = N(log2N − 1)C2 +
N

2
C2 = 4N log2N − 2N

The number of stages satisfies:

S(N) = 2 + S

(
N

2

)
= 2k + S

(
N

2k

)
for k = 0, . . . , log2N − 1

and again, by setting k = log2N − 1:

S(N) = 2 log2N − 1
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Benes networks

Benes network configuration

Two algorithms:

Paull’s algorithm applied recursively

Looping algorithm

equivalent to Paull’s algorithm using a particular sequence of switching
requests
all the switching requests should be known in advance to avoid
reconfigurations
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Benes networks

Master method for recurrence equations

Landau notation for f (n), g(n) > 0

f (n) = Θ(g(n)) means that ∃ c , c ′ > 0, n0 s.t. ∀n ≥ n0:
cg(n) ≤ f (n) ≤ c ′g(n)
f (n) = O(g(n)) means that ∃ c > 0, n0 s.t. ∀n ≥ n0: f (n) ≤ cg(n)

f (n) ∼ g(n) means that lim
n→∞

f (n)

g(n)
= 1

Master method to solve T (n) = aT (n/b) + f (n), a ≥ 1, b ≥ 1

if ∃ ε > 0 s.t. f (n) = O(nlogb a−ε), then

T (n) = Θ(nlogb a)

if f (n) = Θ(nlogb a), then

T (n) = Θ(nlogb a log2 n)
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Benes networks

Clos networks, factorized recursively with factor 2

REAR Clos network, factorized recursively, p = 2 (i.e., Benes
network)

C (N) = NC2 + 2C (N/2)
using master method, a = b = 2, then f (n) = Θ(N); hence,

C (N) = Θ(N log2 N)

SNB Clos network, factorized recursively, p = 2

C (N) = 2NC2 + 3C (N/2)
using master method, a = 3, b = 2, then f (n) = Θ(N) = O(nlog2 3−ε)
with ε = 0.5; hence,

C (N) = Θ(N log2 3) ≈ Θ(N1.58)
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Benes networks

REAR Clos network, factorized recursively with factor
√
N

For convenient factorization, assume N = 2n and n = 2k .

C (N) = 3
√
NC (
√
N) = 3 2n/2C

(
2n/2

)
= 3k2n/2+n/22+...+n/2kC

(
2n/2

k
)

If we set k = log2 n, since 1/2 + 1/22 + . . .+ 1/2k ≈ 1 for large k (i.e.,
large N)

C (N) ≈ 3log2 n2nC (2) = nlog2 3NC (2) = 4N(log2N)1.58
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Benes networks

SNB Clos network, factorized recursively with factor
√
N

For convenient factorization, assume N = 2n and n = 2k . For a better
layout, we assume that r2 = 2

√
N and then:

C (N) =
√
NC (
√
N × 2

√
N) + 2

√
NC (
√
N) +

√
NC (2

√
N ×

√
N)

Since C (
√
N × 2

√
N) = 2C (

√
N),

C (N) = 6
√
NC (
√
N) = 6 2n/2C

(
2n/2

)
= 6k2n/2+n/22+...+n/2kC

(
2n/2

k
)

If we set k = log2 n, since 1/2 + 1/22 + . . .+ 1/2k ≈ 1 for large k (i.e.,
large N)

C (N) ≈ 6log2 n2nC (2) = nlog2 6NC (2) = 4N(log2N)2.58
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Benes networks

Recursive factorization - summary

p = 2

REAR ⇒ C (N) = 4N log2 N (Benes)
SNB ⇒ C (N) = Θ(N1.58)

p =
√
N

REAR ⇒ C (N) = 4N(log2 N)1.58

SNB ⇒ C (N) = 4N(log2 N)2.58
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Self-routing networks

Section 5

Self-routing networks
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Self-routing networks

Banyan networks

self-routing N × N switch
header of the packet drives the routing path

complexity Θ(N log2N)

unique path from each input to each output

based on the Benes network

output idinput id

module 1
module 2

module 3

edge 1
edge 2

edge 3
edge 4

self−routing binary string
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Self-routing networks

Examples of Banyan networks

Shuffle exchange (Omega) network Flip (inverse shuffle exchange) network

Banyan networkBaseline network
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Self-routing networks

Blocking in Banyan networks

Property: if self-routing addresses satisfy both conditions:

strictly monotone outputs, i.e. output destinations are increasing at the
inputs
compact monotone inputs, i.e. no idle inputs between any two active
inputs

then the self-routing is non-blocking

in general, Banyan networks are blocking

it can be shown that the probability that a random input-output
permutation is non-blocking is 2−(N/2) log2 N which goes to zero very
quickly by increasing N

i.e., most full switching configurations are blocking
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Self-routing networks

Batcher-Banyan network

Two switching phases:

(1) self-sorting Batcher network

transform any switching request into a non-blocking switching request
for Banyan network

(2) self-routing Banyan network

final complexity = Θ(N(log2N)2)

Self routing network

(Banyan)

Sorting network

(Batcher)

Compact and monotone
output destinations
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