Multistage switching fabrics

Paolo Giaccone

Notes for the class on "Switching Technologies for Data Centers"

Politecnico di Torino

September 2021

Outline

Space switching

2 Lee's method (not for 2020-21 academic year)

3 Clos networks

Benes networks

5 Self-routing networks

Section 1

Space switching

Introduction

Switching contexts

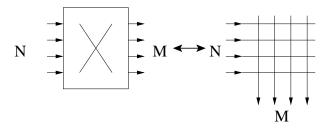
- packet switching (as in the Internet)
- circuit switching (as in the traditional telephone network)

Switching scenarios for different space scaling

- among different processing modules inside a chip
- among chips on the same linecard
- among hosts in a layer-2 network (switch)
- among servers in a data center
- among networks in a layer-3 network (router)

Reference architecture for space switching

- crossbar $N \times M$
 - each internal port may switch an aggregation of external ports (line-grouping)
- best performance
- simple control
- high implementation complexity



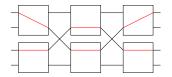
Implementation complexity

- number of basic switching modules
- number of crosspoints
 - related to the number of logical gates and the area on a chip
 - for crossbar: $C(N \times M) = NM$
 - for symmetric crossbar: $C(N) = N^2$
- many other cost functions, depending on the particular technology used for implementation
 - scalability and modularity
 - power consumption
 - reliability
 - switch control and management
 - 2D/3D layout



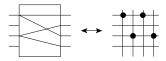
Performance

- under *admissible* (i.e., non conflicting) switching requests (circuits or packets)
- non blocking: any input can be always connected to an idle output
 - strictly non blocking (SNB): any new connection does not change the pre-existing connections
 - rearrangeable (REAR): any new connection *may* change some pre-existing connections
- crossbar is SNB by construction
- SNB implies REAR but not viceversa



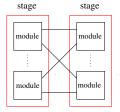
Space switching

- Traffic support
 - Unicast
 - Multicast



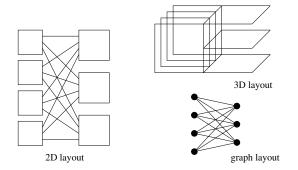
• Multistage networks

- modules
- stages



Full interconnections among stages

- Two stage switch, with **full interconnections** among the I-stage modules and the II-stage modules
- Possible (equivalent) graphical descriptions:



Section 2

Lee's method (not for 2021-22 academic year)

Lee's method

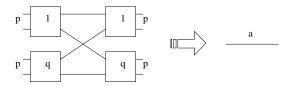
- approximated blocking analysis of multistage networks
- assumptions:
 - traffic uniformly distributed among inputs and outputs
 - random routing policy to distribute uniformly the traffic across the modules and links
 - independence of the busy state among all the links
- evaluate the blocking probability "seen" by a new circuit to be established, in function of the offered load

Lee's method

- let ρ be the average load of each input (i.e., the fraction of time the input is busy): $\rho \in [0, 1]$
- let $\rho_{tot} = N\rho$ be the total load to the switch: $\rho_{tot} \in [0, N]$ Erlang
- examples
 - in a 10 \times 10 telephone switch, each input receives 6 calls/hour and each call lasts on average 3 minutes; then $\rho=$ 0.3 and the total load is $\rho_{tot}=$ 3 Erlang
 - in a 10 × 10 packet switch, with ports at 100 Mbps, each input receives on average 10³ pkt/s, each of size 1500 bytes; then $\rho = \frac{1500 \times 8 \times 10^3}{10^8} = 0.12$ and $\rho_{tot} = 1.2$ Erlang

Lee's method for two stages

- symmetric network, with N = pq ports
- ρ is the average input load

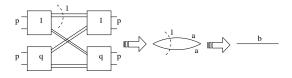


$$a = rac{
ho N}{q^2} \quad \Rightarrow \quad P_b =
ho rac{p}{q}$$
 $C = 2qN$

Note that for $\rho \geq \frac{q}{p}$, $P_b = 1$.

Lee's method for two stages

- symmetric network, with N = pq ports
- ρ is the average input load
- / multiple edges



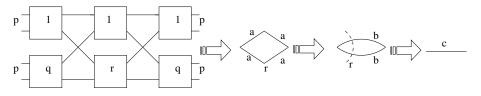
$$a = rac{
ho N}{lq^2}, \ b = a^l \qquad \Rightarrow \qquad P_b = \left(
ho rac{p}{lq}
ight)^l$$
 $C = 2lqN$

Note that for $\rho \geq \frac{lq}{p}$, $P_b = 1$.

Lee's method (not for 2021-22 academic year)

Lee's method for three stages

- symmetric network, with N = pq ports
- ρ is the average input load



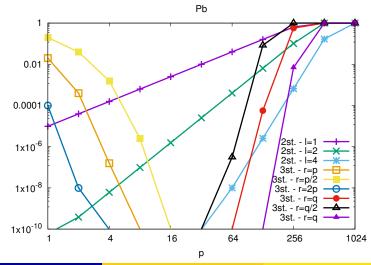
$$a = rac{
ho N}{qr}, \ b = 1 - (1 - a)^2 = 2a - a^2, \ c = b^r = a^r (2 - a)^r \Rightarrow$$

$$P_b = \rho^r \left[\frac{2N}{qr} - \frac{\rho N^2}{q^2 r^2} \right]^r \qquad C = 2rN + rq^2$$

Note that for $\rho \geq \frac{r}{p}$, $P_b = 1$.

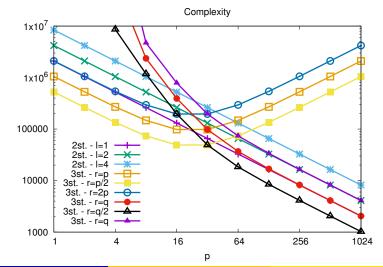
Design comparison

 $N = 1024, \ \rho = 0.01$



Design comparison

N = 1024, $\rho = 0.01$



Giaccone (Politecnico di Torino)

Section 3

Clos networks

Giaccone (Politecnico di Torino)

Clos networks and derived networks

Clos network

- strictly non blocking: Clos theorem
- rearrangeable: Slepian Duguid theorem
- Paull's matrix and Paull's algorithm
- Recursive construction
 - Benes network (p = 2), looping algorithm

•
$$p = \sqrt{\Lambda}$$

- Self routing
 - Banyan networks

Clos networks

three stage networks

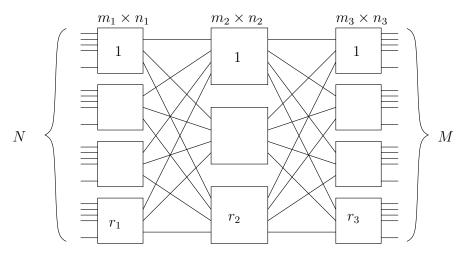
- *m_i*: number of inputs for modules at stage *i*
- n_i: number of outputs for modules at stage i
- r_i: number of modules at stage i
- $M_i = \{1, 2, ..., r_i\}$ is the set of modules identifiers belonging to *i*-th stage
- Exactly one link between two modules in successive stages

•
$$r_1 = m_2$$
, $r_2 = n_1 = m_3$, $r_3 = m_2$

Clos networks

Clos network

 $N \times M$ Clos network with $N = m_1 r_1$ and $M = r_3 n_3$



SNB Clos networks

Clos Theorem

A Clos network is SNB if and only if the number of second stage switches r_2 satisfies:

$$r_2 \geq m_1 + n_3 - 1$$

In particular, a symmetric network with $m_1 = n_3 = n$ is SNB if and only if

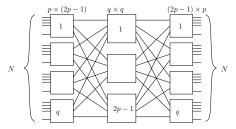
$$r_2 \geq 2n-1$$

Proof: Assume that module *i* of the I-stage should be connected to module *j* of the III-stage. Hence, a new symbol should be added in P_{ij} of Paull's matrix *P*. In the worst case, there are already $m_1 - 1$ symbols in the *i*-th row of *P* and $n_3 - 1$ symbols in the *j*-th column. They are all distinct. Hence, to find a new symbol available in the II-stage, it should be $r_2 > (m_1 - 1) + (n_3 - 1)$ which implies $r_2 \ge m_1 + n_3 - 1$.

Giaccone (Politecnico di Torino)

Complexity of a SNB Clos network

- consider a symmetric Clos network, with m₁ = n₃ = p, r₁ = r₃ = q with N = pq
- thanks to Clos Theorem, the smallest Clos network is built with $r_2 = 2p 1$



Total complexity

$$C_{SNB}(N) = qC(p \times (2p-1)) + (2p-1)C(q \times q) + qC((2p-1) \times p) =$$

 $(2p-1)(2pq+q^2)$

Approximated complexity (assume $r_2 = 2p$):

$$C_{SNB}(N) \approx qC(p \times (2p)) + 2pC(q \times q) + qC((2p) \times p) = 4p^2q + 2pq^2$$

Giaccone (Politecnico di Torino)

Multistage switching fabrics

Sept. 2021 23 / 49

Paull's matrix

 describes the state of the active interconnections present in a Clos network (i.e., the switching configurations of all the II-stage modules)

Definition

- matrix $P = [P_{ij}]$ of size $r_1 \times r_3$
 - P_{ij} is a set of II-stage modules, i.e. $P_{ij} \subseteq M_2$
 - if $k \in P_{ij}$ means that II-stage module k is connected to I-stage module i and III-stage module j
 - feasibility conditions
 - each row with at most m_1 symbols
 - each column with at most n_3 symbols
 - each element with at most min $\{m_1, n_3\}$ symbols
 - each $k \in M_2$ appears at most once for each row and for each column

Configuring a SNB Clos network

- when an input of I-stage module *i* should be connected to an output of III-stage module *j*, find any II-stage module *k* such that the connections *i* → *k* and *k* → *j* are both free
 - such connection always exists thanks to the Clos theorem
 - in Paull's matrix *P*, this operation corresponds to find any available symbol in both *i*-th row and *j*-th column

Rearrangeable non-blocking Clos networks

Slepian-Duguid Theorem

A Clos network is rearrangeable (REAR) if and only if the number of second stage switches r_2 satisfies:

 $r_2 \geq \max\{m_1, n_3\}$

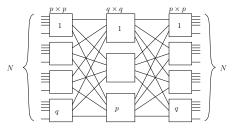
In particular, a symmetric network with $m_1 = n_3 = n$ is rearrangeable (REAR) if and only

 $r_2 \ge n$

Proof: It will be proved using the Birchkoff von Neumann theorem, later in the course

Complexity of a REAR Clos network

- consider a symmetric Clos network, with $m_1 = n_3 = p$, $r_1 = r_3 = q$ with N = pq
- thanks to Slepian Duguid Theorem, the smallest Clos network is built with r₂ = p



Total complexity

$$C_{REAR}(N) = qC(p \times p) + pC(q \times q) + qC(p \times p) = 2qp^2 + pq^2$$

Clos complexity comparison

By setting q = N/p in the formulas of the Clos networks complexity:

$$C_{SNB} = (2p - 1) \left(2N + \frac{N^2}{p^2} \right) \approx 4pN + \frac{2}{p}N^2$$
$$C_{REARR} = 2pN + \frac{1}{p}N^2$$

and hence,

$$C_{SNB}(N) = \frac{2p-1}{p}C_{REAR}(N)$$

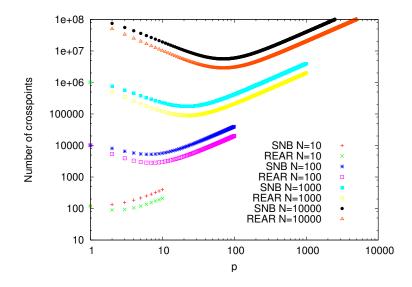
which means:

$$C_{REAR}(N) \leq C_{SNB}(N) < 2C_{REAR}(N)$$

Note that, to be advantageous with respect to the crossbar, it should be:

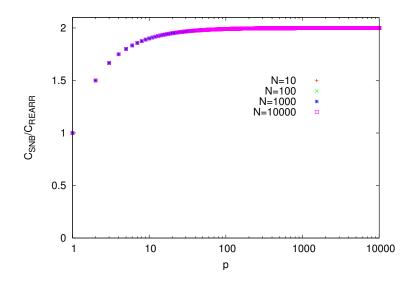
$$C_{REAR}(N) < N^2$$
 $C_{SNB}(N) < N^2$

Clos complexity comparison



Giaccone (Politecnico di Torino)

Clos complexity comparison



Clos networks

Minimum complexity for REARR Clos network

• minimum of C_{REARR} obtained for \hat{p} :

$$rac{\partial C_{\text{REARR}}}{\partial p} = 2N - rac{N^2}{p^2} = 0 \qquad \Rightarrow \qquad \hat{p} = \sqrt{rac{N}{2}}$$

Hence, the minimum complexity is:

$$C_{\mathsf{REARR}}^{opt} = 2\sqrt{2}N\sqrt{N} = \Theta(N\sqrt{N})$$

- for any N > 8, $C_{\rm REARR}^{opt} < C_{\rm crossbar} = N^2$
- for p = 1, the Clos network degenerates into a $N \times N$ crossbar; $C_{REAR}(p = 1) = N^2$
- for p = N, the Clos network degenerates into two tandem N × N crossbars; C_{REAR}(p = N) = 2N²

Configuring a REAR Clos network

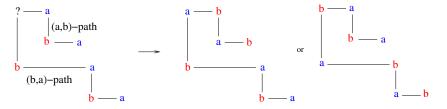
Paull's algorithm

- incremental algorithm, used to add one connection at one time and reconfigure the network if needed
- will be also used to support rate guarantees in input queued switches
- (Paull's Theorem) for each new connection, the number of connections needed to be rearranged is at most min{r₁, r₃} − 1
- for each new connection, the number of II-stage modules to reconfigure is at most two

Clos networks

Paull's algorithm

- Given Paull's matrix $P = [P_{ij}]$ and a new connection to add in P_{ij} ; two cases are possible
 - it exists a II-stage module *a* which is available in both row *i* and column *j* of *P*; hence, use module *a* for the new connection, without any rearrangment: P_{ij} = P_{ij} ∪ a
 - otherwise, there should be two II-stage modules a and b such that a is available in row i, and b is available in column j of P. Find an (a, b)-path (or a (b, a)-path) starting from P_{ij}. Now swap a with b in such path, and use a (or a b for the (b, a)-path) for the new connection: P_{ij} = P_{ij} ∪ a.



Section 4

Benes networks

Recursive construction

- main idea to exploit recursively
 - to build a REAR Clos network, use a REAR Clos network for each module
 - to build a SNB Clos network, use a SNB Clos network for each module
- many ways to factorize the network
 - for small complexity, keep small p

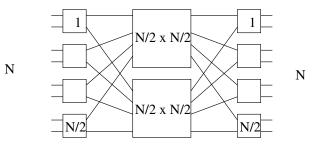
$$C_{REAR}(N) = 2qp^2 + pq^2$$
 $C_{SNB}(N) = (2p - 1)q(2p + q)$

 $C_{REAR}(N, p = 2) = N^2/2 + 4N$ vs. $C_{SNB}(N, p = 2) = 3N^2/4 + 6N$

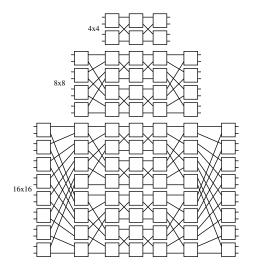
• for keeping the same "aspect ratio", use $p=\sqrt{N}$

Benes network

- Clos network, REAR, recursively factorized with p = 2, exploiting only 2×2 modules
- $N = 2^n$ for some n



Example of Benes networks



Benes network complexity

The number of crosspoints satisfies:

$$C(N) = NC_2 + 2C\left(\frac{N}{2}\right) = kNC_2 + 2^kC\left(\frac{N}{2^k}\right) \quad \text{for } k = 0, \dots, \log_2 N - 1$$

Now, by setting $k = \log_2 N - 1$ and considering $C_2 = 4$:

$$C(N) = N(\log_2 N - 1)C_2 + \frac{N}{2}C_2 = 4N\log_2 N - 2N$$

The number of stages satisfies:

$$S(N) = 2 + S\left(\frac{N}{2}\right) = 2k + S\left(\frac{N}{2^k}\right)$$
 for $k = 0, \dots, \log_2 N - 1$

and again, by setting $k = \log_2 N - 1$:

$$S(N) = 2\log_2 N - 1$$

Benes network configuration

Two algorithms:

- Paull's algorithm applied recursively
- Looping algorithm
 - equivalent to Paull's algorithm using a particular sequence of switching requests
 - all the switching requests should be known in advance to avoid reconfigurations

Benes networks

Master method for recurrence equations

• Landau notation for f(n), g(n) > 0

• $f(n) = \Theta(g(n))$ means that $\exists c, c' > 0, n_0$ s.t. $\forall n \ge n_0$: $cg(n) \le f(n) \le c'g(n)$

• f(n) = O(g(n)) means that $\exists c > 0, n_0$ s.t. $\forall n \ge n_0$: $f(n) \le cg(n)$

•
$$f(n) \sim g(n)$$
 means that $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$

• Master method to solve T(n) = aT(n/b) + f(n), $a \ge 1$, $b \ge 1$

• if
$$\exists \ \epsilon > 0$$
 s.t. $f(n) = O(n^{\log_b a - \epsilon})$, then

$$T(n) = \Theta(n^{\log_b a})$$

• if
$$f(n) = \Theta(n^{\log_b a})$$
, then

$$T(n) = \Theta(n^{\log_b a} \log_2 n)$$

Clos networks, factorized recursively with factor 2

- REAR Clos network, factorized recursively, p = 2 (i.e., Benes network)
 - $C(N) = NC_2 + 2C(N/2)$
 - using master method, a = b = 2, then $f(n) = \Theta(N)$; hence,

 $C(N) = \Theta(N \log_2 N)$

- SNB Clos network, factorized recursively, p = 2
 - $C(N) = 2NC_2 + 3C(N/2)$
 - using master method, a = 3, b = 2, then $f(n) = \Theta(N) = O(n^{\log_2 3 \epsilon})$ with $\epsilon = 0.5$; hence,

$$C(N) = \Theta(N^{\log_2 3}) \approx \Theta(N^{1.58})$$

REAR Clos network, factorized recursively with factor \sqrt{N}

For convenient factorization, assume $N = 2^n$ and $n = 2^k$.

$$C(N) = 3\sqrt{N}C(\sqrt{N}) = 3 2^{n/2}C(2^{n/2}) = 3^{k}2^{n/2+n/2^{2}+...+n/2^{k}}C(2^{n/2^{k}})$$

If we set $k = \log_2 n$, since $1/2 + 1/2^2 + \ldots + 1/2^k \approx 1$ for large k (i.e., large N)

$$C(N) \approx 3^{\log_2 n} 2^n C(2) = n^{\log_2 3} N C(2) = 4 N (\log_2 N)^{1.58}$$

SNB Clos network, factorized recursively with factor \sqrt{N}

For convenient factorization, assume $N = 2^n$ and $n = 2^k$. For a better layout, we assume that $r_2 = 2\sqrt{N}$ and then:

 $C(N) = \sqrt{N}C(\sqrt{N} \times 2\sqrt{N}) + 2\sqrt{N}C(\sqrt{N}) + \sqrt{N}C(2\sqrt{N} \times \sqrt{N})$ Since $C(\sqrt{N} \times 2\sqrt{N}) = 2C(\sqrt{N})$,

$$C(N) = 6\sqrt{N}C(\sqrt{N}) = 62^{n/2}C(2^{n/2}) = 6^{k}2^{n/2+n/2^{2}+\dots+n/2^{k}}C(2^{n/2^{k}})$$

If we set $k = \log_2 n$, since $1/2 + 1/2^2 + \ldots + 1/2^k \approx 1$ for large k (i.e., large N)

$$C(N) \approx 6^{\log_2 n} 2^n C(2) = n^{\log_2 6} N C(2) = 4 N (\log_2 N)^{2.58}$$

Recursive factorization - summary

•
$$p = 2$$

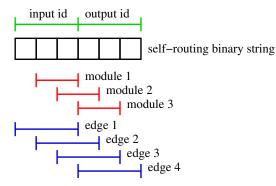
• REAR $\Rightarrow C(N) = 4N \log_2 N$ (Benes)
• SNB $\Rightarrow C(N) = \Theta(N^{1.58})$
• $p = \sqrt{N}$
• REAR $\Rightarrow C(N) = 4N (\log_2 N)^{1.58}$
• SNB $\Rightarrow C(N) = 4N (\log_2 N)^{2.58}$

Section 5

Self-routing networks

Banyan networks

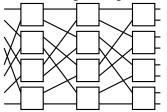
- self-routing $N \times N$ switch
 - header of the packet drives the routing path
- complexity $\Theta(N \log_2 N)$
- unique path from each input to each output
- based on the Benes network

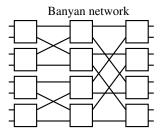


Examples of Banyan networks

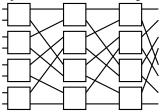
Baseline network

Shuffle exchange (Omega) network





Flip (inverse shuffle exchange) network



Blocking in Banyan networks

- Property: if self-routing addresses satisfy both conditions:
 - strictly monotone outputs, i.e. output destinations are increasing at the inputs
 - compact monotone inputs, i.e. no idle inputs between any two active inputs

then the self-routing is non-blocking

- in general, Banyan networks are blocking
- it can be shown that the probability that a random input-output permutation is non-blocking is $2^{-(N/2)\log_2 N}$ which goes to zero very quickly by increasing N
 - i.e., most full switching configurations are blocking

Batcher-Banyan network

Two switching phases:

- (1) self-sorting Batcher network
 - transform any switching request into a non-blocking switching request for Banyan network
- (2) self-routing Banyan network
- final complexity = $\Theta(N(\log_2 N)^2)$

