Multistage switching fabrics - Part I

Paolo Giaccone

Version: September 30, 2016
Outline

- Introduction
- Complexity and performance of switches
- Space switching
- Lee’s method
Introduction

Switching contexts

- packet switching (as in the Internet)
- circuit switching (as in the traditional telephone network)

Switching scenarios for different space scaling

- among different processing modules inside a chip
- among chips on the same linecard
- among hosts in a layer-2 network (switch)
- among servers in a data center
- among networks in a layer-3 network (router)
Reference architecture for space switching

- crossbar $N \times M$
 - each internal port may switch an aggregation of external ports (line-grouping)
- best performance
- simple control
- high implementation complexity

![Diagram of crossbar switch architecture](image-url)
Implementation complexity

- number of basic switching modules
- number of crosspoints
 - related to the number of logical gates and the area on a chip
 - for crossbar: $C(N \times M) = NM$
 - for symmetric crossbar: $C(N) = N^2$
- many other cost functions, depending on the particular technology used for implementation
 - scalability and modularity
 - power consumption
 - reliability
 - switch control and management
 - 2D/3D layout
Performance

- under *admissible* (i.e., non conflicting) switching requests (circuits or packets)
- non blocking: any input can be always connected to an idle output
 - strictly non blocking (SNB): any new connection does not change the pre-existing connections
 - rearrangeable (REAR): any new connection *may* change some pre-existing connections
- crossbar is SNB by construction
- SNB implies REAR but not viceversa
Space switching

- Traffic support
 - Unicast
 - Multicast

- Multistage networks
 - modules
 - stages
Full interconnections among stages

- Two stage switch, with **full interconnections** among the I-stage modules and the II-stage modules

- Possible (equivalent) graphical descriptions:
Lee’s method
Lee’s method

- *approximated* blocking analysis of multistage networks

- assumptions:
 - traffic uniformly distributed among inputs and outputs
 - random routing policy to distribute uniformly the traffic across the modules and links
 - *independence* of the busy state among all the links

- evaluate the blocking probability “seen” by a new circuit to be established, in function of the offered load
Lee’s method

- let ρ be the average load of each input (i.e., the fraction of time the input is busy):
 \[\rho \in [0, 1] \]

- let $\rho_{tot} = N\rho$ be the total load of each input: $\rho_{tot} \in [0, N]$ Erlang

- examples
 - in a 10×10 telephone switch, each input receives 6 calls/hour and each call lasts on average 3 minutes; then $\rho = 0.3$ and the total load is $\rho_{tot} = 3$ Erlang
 - in a 10×10 packet switch, with ports at 100 Mbps, each input receives on average 10^3 pkt/s, each of size 1500 bytes; then $\rho = \frac{1500 \times 8 \times 10^3}{10^8} = 0.12$ and $\rho_{tot} = 1.2$ Erlang
Lee’s method for two stages

- symmetric network, with $N = pq$ ports
- ρ is the average input load

\[
a = \frac{\rho N}{q^2} \quad \Rightarrow \quad P_b = \rho \frac{p}{q}
\]

\[C = 2qN\]

Note that for $\rho \geq \frac{q}{p}$, $P_b = 1$.
Lee’s method for two stages

- symmetric network, with $N = pq$ ports
- ρ is the average input load
- l multiple edges

\[a = \frac{\rho N}{lq^2}, \quad b = a^l \quad \Rightarrow \quad P_b = \left(\frac{\rho \frac{p}{lq}}{lq^2}\right)^l \]

\[C = 2lqN \]

Note that for $\rho \geq \frac{lq}{p}$, $P_b = 1$.
Lee’s method for three stages

- symmetric network, with \(N = pq \) ports
- \(\rho \) is the average input load

\[
a = \frac{\rho N}{qr}, \quad b = 1 - (1-a)^2 = 2a - a^2, \quad c = b^r = a^r(2-a)^r \quad \Rightarrow \quad P_b = \rho^r \left[\frac{2N}{qr} - \frac{\rho N^2}{q^2r^2} \right]^r
\]

\[
C = 2rN + rq^2
\]

Note that for \(\rho \geq \frac{r}{p} \), \(P_b = 1 \).
Design comparison

\[N = 1024, \rho = 0.01 \]
Design comparison

$N = 1024, \rho = 0.01$
Multistage switching fabrics - part II

Paolo Giaccone
Outline

- Clos network
 - strictly non blocking: Clos theorem
 - rearrangeable: Slepian Duguid theorem
 - Paull’s matrix and Paull’s algorithm

- Recursive construction
 - Benes network \((p = 2)\), looping algorithm
 - \(p = \sqrt{N}\)

- Self routing
 - Banyan networks
Clos networks
Clos networks

- three stage networks
 - m_i: number of inputs for modules at stage i
 - n_i: number of outputs for modules at stage i
 - r_i: number of modules at stage i
 - $M_i = \{1, 2, \ldots, r_i\}$ is the set of modules identifiers belonging to i-th stage

- Exactly one link between two modules in successive stages
 - $r_1 = m_2$, $r_2 = n_1 = m_3$, $r_3 = m_2$
Clos network

$N \times M$ Clos network with $N = m_1 r_1$ and $M = r_3 n_3$
SNB Clos networks

Clos Theorem:

A Clos network is SNB if and only if the number of second stage switches \(r_2 \) satisfies:

\[
r_2 \geq m_1 + n_3 - 1
\]

In particular, a symmetric network with \(m_1 = n_3 = n \) is SNB if and only if

\[
r_2 \geq 2n - 1
\]

Proof: Assume that module \(i \) of the I-stage should be connected to module \(j \) of the III-stage. Hence, a new symbol should be added in \(P_{ij} \) of Paull's matrix \(P \). In the worst case, there are already \(m_1 - 1 \) symbols in the \(i \)-th row of \(P \) and \(n_3 - 1 \) symbols in the \(j \)-th column. They are all distinct. Hence, to find a new symbol available in the II-stage, it should be

\[
r_2 > (m_1 - 1) + (n_3 - 1) \text{ which implies } r_2 \geq m_1 + n_3 - 1.
\]
Complexity of a SNB Clos network

- consider a symmetric Clos network, with $m_1 = n_3 = p$, $r_1 = r_3 = q$ with $N = pq$
- thanks to Clos Theorem, the smallest Clos network is built with $r_2 = 2p - 1$
- total complexity:

$$C_{SNB}(N) = qC(p \times (2p - 1)) + (2p - 1)C(q \times q) + qC((2p - 1) \times p) = (2p - 1)(2pq + q^2)$$

- approximated complexity (assume $r_2 = 2p$):

$$C_{SNB}(N) \approx qC(p \times (2p)) + 2pC(q \times q) + qC((2p) \times p) = 4p^2q + 2pq^2$$
Paull’s matrix

• describes the state of the active interconnections present in a Clos network (i.e., the switching configurations of all the II-stage modules)

• matrix $P = \begin{bmatrix} P_{ij} \end{bmatrix}$ of size $r_1 \times r_3$

 – P_{ij} is a set of II-stage modules, i.e. $P_{ij} \subseteq M_2$

 – if $k \in P_{ij}$ means that II-stage module k is connected to I-stage module i and III-stage module j

 – feasibility conditions

 * each row with at most m_1 symbols
 * each column with at most n_3 symbols
 * each element with at most $\min\{m_1, n_3\}$ symbols
 * each $k \in M_2$ appears at most once for each row and for each column
Configuring a SNB Clos network

- when an input of I-stage module i should be connected to an output of III-stage module j, find any II-stage module k such that the connections $i \rightarrow k$ and $k \rightarrow j$ are both free
 - such connection always exists thanks to the Clos theorem
 - in Paull's matrix P, this operation corresponds to find any available symbol in both i-th row and j-th column
Rearrangeable non-blocking Clos networks

Slepian-Duguid Theorem:

A Clos network is REAR if and only if the number of second stage switches \(r_2 \) satisfies:

\[
r_2 \geq \max\{m_1, n_3\}
\]

In particular, a symmetric network with \(m_1 = n_3 = n \) is SNB if and only

\[
r_2 \geq n
\]

Proof: It will be proved using the Birchkoff von Neumann theorem, later in the course
Complexity of a REAR Clos network

- consider a symmetric Clos network, with $m_1 = n_3 = p$, $r_1 = r_3 = q$ with $N = pq$
- thanks to Slepian Duguid Theorem, the smallest Clos network is built with $r_2 = p$
- total complexity:

$$C_{REAR}(N) = qC(p \times p) + pC(q \times q) + qC(p \times p) = 2qp^2 + pq^2$$
Clos complexity comparison

By setting \(q = \frac{N}{p} \) in the formulas of the Clos networks complexity:

\[
C_{SNB} = (2p - 1) \left(2N + \frac{N^2}{p^2}\right) \approx 4pN + \frac{2}{p}N^2
\]

\[
C_{REARR} = 2pN + \frac{1}{p}N^2
\]

and hence,

\[
C_{SNB}(N) = \frac{2p - 1}{p} C_{REAR}(N)
\]

which means:

\[
C_{REAR}(N) \leq C_{SNB}(N) < 2C_{REAR}(N)
\]

Note that, to be advantageous with respect to the crossbar, it should be:

\[
C_{REAR}(N) < N^2 \quad C_{SNB}(N) < N^2
\]
Clos complexity comparison

Number of crosspoints vs. p for different values of N: SNB $N=10$, REAR $N=10$, SNB $N=100$, REAR $N=100$, SNB $N=1000$, REAR $N=1000$, SNB $N=10000$, REAR $N=10000$.
Clos complexity comparison
Minimum complexity for REARR Clos network

- minimum of C_{REARR} obtained for \hat{p}:

$$\frac{\partial C_{\text{REARR}}}{\partial p} = 2N - \frac{N^2}{p^2} = 0 \quad \Rightarrow \quad \hat{p} = \sqrt{\frac{N}{2}}$$

Hence, the minimum complexity is:

$$C_{\text{REARR}}^{\text{opt}} = 2\sqrt{2N}\sqrt{N} = \Theta(N\sqrt{N})$$

- for any $N > 8$, $C_{\text{REARR}}^{\text{opt}} < C_{\text{crossbar}} = N^2$

- for $p = 1$, the Clos network degenerates into a $N \times N$ crossbar;

$$C_{\text{REAR}}(p = 1) = N^2$$

- for $p = N$, the Clos network degenerates into two tandem $N \times N$ crossbars;

$$C_{\text{REAR}}(p = N) = 2N^2$$
Configuring a REAR Clos network

- **Paull’s algorithm**
 - incremental algorithm, used to add one connection at one time and reconfigure the network if needed
 - will be also used to support rate guarantees in input queued switches
 - *(Paull’s Theorem)* for each new connection, the number of connections needed to be rearranged is at most $\min\{r_1, r_3\} - 1$
 - for each new connection, the number of II-stage modules to reconfigure is at most two
Paull’s algorithm

- Given Paull’s matrix \(P = [P_{ij}] \) and a new connection to add in \(P_{ij} \); two cases are possible
 - it exists a II-stage module \(a \) which is available in both row \(i \) and column \(j \) of \(P \); hence, use module \(a \) for the new connection, without any rearrangement: \(P_{ij} = P_{ij} \cup a \)
 - otherwise, there should be two II-stage modules \(a \) and \(b \) such that \(a \) is available in row \(i \), and \(b \) is available in column \(j \) of \(P \). Find an \((a, b)\)-path (or a \((b, a)\)-path) starting from \(P_{ij} \). Now swap \(a \) with \(b \) in such path, and use \(a \) (or \(b \) for the \((b, a)\)-path) for the new connection: \(P_{ij} = P_{ij} \cup a \).

\[\begin{align*}
? &\quad a \\
\text{(a,b)-path} &\quad (a,b)\text{-path} \\
b &\quad a \\
\text{(b,a)-path} &\quad (b,a)\text{-path} \\
b &\quad a \\
\end{align*}\]
Recursive construction of switching networks
Recursive construction of switching networks

- main idea to exploit recursively
 - to build a REAR Clos network, use a REAR Clos network for each module
 - to build a SNB Clos network, use a SNB Clos network for each module
- many ways to factorize the network
 - for small complexity, keep small p

\[
C_{REAR}(N) = 2qp^2 + pq^2 \quad C_{SNB}(N) = (2p - 1)q(2p + q)
\]
\[
C_{REAR}(N, p = 2) = \frac{N^2}{2} + 4N \quad \text{vs.} \quad C_{SNB}(N, p = 2) = \frac{3N^2}{4} + 6N
\]
- for keeping the same “aspect ratio”, use $p = \sqrt{N}$
Benes network

- Clos network, REAR, recursively factorized with $p = 2$, exploiting only 2×2 modules
- $N = 2^n$ for some n
Example of Benes networks
Benes network complexity

The number of crosspoints satisfies:

\[C(N) = NC_2 + 2C\left(\frac{N}{2}\right) = kNC_2 + 2^kC\left(\frac{N}{2^k}\right) \quad \text{for} \quad k = 0, \ldots, \log_2 N - 1 \]

Now, by setting \(k = \log_2 N - 1 \) and considering \(C_2 = 4 \):

\[C(N) = N(\log_2 N - 1)C_2 + \frac{N}{2}C_2 = 4N \log_2 N - 2N \]

The number of stages satisfies:

\[S(N) = 2 + S\left(\frac{N}{2}\right) = 2k + S\left(\frac{N}{2^k}\right) \quad \text{for} \quad k = 0, \ldots, \log_2 N - 1 \]

and again, by setting \(k = \log_2 N - 1 \):

\[S(N) = 2 \log_2 N - 1 \]
Benes network configuration

Two algorithms:

- Paull’s algorithm applied recursively
- Looping algorithm
 - equivalent to Paull’s algorithm using a particular sequence of switching requests
 - all the switching requests should be known in advance to avoid reconfigurations
Master method for recurrence equations

- Landau notation for $f(n), g(n) > 0$
 - $f(n) = \Theta(g(n))$ means that $\exists c, c' > 0, n_0$ s.t. $\forall n \geq n_0$:
 $$cg(n) \leq f(n) \leq c'g(n)$$
 - $f(n) = O(g(n))$ means that $\exists c > 0, n_0$ s.t. $\forall n \geq n_0$: $f(n) \leq cg(n)$
 - $f(n) \sim g(n)$ means that $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$

- Master method to solve $T(n) = aT(n/b) + f(n), a \geq 1, b \geq 1$
 - if $\exists \epsilon > 0$ s.t. $f(n) = O(n^{\log_b a - \epsilon})$, then
 $$T(n) = \Theta(n^{\log_b a})$$
 - if $f(n) = \Theta(n^{\log_b a})$, then
 $$T(n) = \Theta(n^{\log_b a \log_2 n})$$
Clos networks, factorized recursively with factor 2

- REAR Clos network, factorized recursively, $p = 2$ (i.e., Benes network)
 - $C(N) = NC_2 + 2C(N/2)$
 - using master method, $a = b = 2$, then $f(n) = \Theta(N)$; hence,
 $$C(N) = \Theta(N \log_2 N)$$

- SNB Clos network, factorized recursively, $p = 2$
 - $C(N) = 2NC_2 + 3C(N/2)$
 - using master method, $a = 3$, $b = 2$, then $f(n) = \Theta(N) = O(n^{\log_2 3-\epsilon})$ with $\epsilon = 0.5$; hence,
 $$C(N) = \Theta(N^{\log_2 3}) \approx \Theta(N^{1.58})$$
REAR Clos network, factorized recursively with factor \sqrt{N}

For convenient factorization, assume $N = 2^n$ and $n = 2^k$.

$$C(N) = 3\sqrt{N}C(\sqrt{N}) = 3 \cdot 2^{n/2}C\left(2^{n/2}\right) = 3^k 2^{n/2 + n/2^2 + \ldots + n/2^k} C\left(2^{n/2^k}\right)$$

If we set $k = \log_2 n$, since $1/2 + 1/2^2 + \ldots + 1/2^k \approx 1$ for large k (i.e., large N)

$$C(N) \approx 3^{\log_2 n} 2^n C(2) = n^{\log_2 3} N C(2) = 4N (\log_2 N)^{1.58}$$
SNB Clos network, factorized recursively with factor \sqrt{N}

For convenient factorization, assume $N = 2^n$ and $n = 2^k$. For a better layout, we assume
that $r_2 = 2\sqrt{N}$ and then:

$$C(N) = \sqrt{NC}(\sqrt{N} \times 2\sqrt{N}) + 2\sqrt{NC}(\sqrt{N}) + \sqrt{NC}(2\sqrt{N} \times \sqrt{N})$$

Since $C(\sqrt{N} \times 2\sqrt{N}) = 2C(\sqrt{N})$,

$$C(N) = 6\sqrt{NC}(\sqrt{N}) = 6 \cdot 2^{n/2}C\left(2^{n/2}\right) = 6^k \cdot 2^{n/2+n/2^2+...+n/2^k}C\left(2^{n/2^k}\right)$$

If we set $k = \log_2 n$, since $1/2 + 1/2^2 + ... + 1/2^k \approx 1$ for large k (i.e., large N)

$$C(N) \approx 6^{\log_2 n}2^nC(2) = n^{\log_2 6}NC(2) = 4N(\log_2 N)^{2.58}$$
Recursive factorization - summary

- $p = 2$
 - REAR $\Rightarrow C(N) = 4N \log_2 N$ (Benes)
 - SNB $\Rightarrow C(N) = \Theta(N^{1.58})$

- $p = \sqrt{N}$
 - REAR $\Rightarrow C(N) = 4N(\log_2 N)^{1.58}$
 - SNB $\Rightarrow C(N) = 4N(\log_2 N)^{2.58}$
Banyan networks

- self-routing $N \times N$ switch
 - header of the packet drives the routing path
- complexity $\Theta(N \log_2 N)$
- unique path from each input to each output
- based on the Benes network
Examples of Banyan networks

Baseline network

Banyan network

Shuffle exchange (Omega) network

Flip (inverse shuffle exchange) network
Blocking in Banyan networks

- **Property:** if self-routing addresses satisfy both conditions:
 - strictly monotone outputs, i.e. output destinations are increasing at the inputs
 - compact monotone inputs, i.e. no idle inputs between any two active inputs
then the self-routing is non-blocking

- in general, Banyan networks are blocking
 - number of 2×2 modules in a Banyan network: $(N/2) \log_2 N$
 - number of possible states in a Banyan network: $S_{\text{Banyan}} = 2^{(N/2) \log_2 N}$
 - taking logarithm:
 \[
 \log_2 S_{\text{Banyan}} = (N/2) \log_2 N \sim \frac{1}{2} \log_2 N!
 \]

- the probability that a random input-output permutation is non-blocking is $2^{-(N/2) \log_2 N}$
 which goes to zero very quickly by increasing N
Batcher-Banyan network

Two switching phases:

- (1) self-sorting Batcher network
 - transform any switching request into a non-blocking switching request for Banyan network

- (2) self-routing Banyan network

- final complexity = $\Theta(N (\log_2 N)^2)$