Introduction to Quality of Service

Andrea Bianco
Telecommunication Network Group
firstname.lastname@polito.it
http://www.telematica.polito.it/

Quality of service

- What is the meaning of quality of service?
- Different definitions
- We use the term mainly to describe performance seen by user traffic
 - Define indices to describe quality
- Examples of indices describing quality of service:
 - Speed (in bit/s), throughput, bit rate, bandwidth
 - Delay (average, percentile, maximum, variance, jitter)
 - Loss probability
 - Error probability
 - Blocking probability
 - Fault probability or availability
 - Recovery time after a fault
 - Many others (time needed to open a connection, costs and tariffs ...)

Traffic heterogeneity

User traffic characterization

- CBR (Constant Bit Rate) sources:
 - Rate (bit/s)
 - “Perfectly” known
 - Call duration (s)
 - Call generation process
 - Only statistically known

- VBR sources:
 - Average rate (bit/s)
 - Known?
 - Over which period?
 - Peak rate (bit/s) or
 - Burstiness (Peak rate/ average rate)
 - Known (worst case)
 - Burst duration
 - Known?
 - Call duration (s)
 - Call generation process
 - Only statistically known
Introduction to QoS

User traffic characterization

Burstiness = Peak rate / Average rate

Quality of service

Networks used as examples
- Fixed telephone network: POTS
- Internet
- B-ISDN

Let’s start by describing in an informal way the quality of service provided by these networks

POTS
- Characteristics
 - CBR source completely known (generated by the network)
 - Circuit switching
 - Constant, dedicated bit rate \(\Rightarrow \) no congestion
 - Minimum possible delay (only propagation): order of tens of ms (real time)
 - Zero loss probability
 - Error probability smaller than few %
 - Small or negligible blocking probability
 - QoS largely independent of other users (apart from blocking probability)
 - Network utilization can be really low, user satisfaction very high

Internet
- Characteristics
 - Source behavior unknown
 - Packet switching with datagram service
 - Complete sharing of network resources
 - Bit rate and delay unknown
 - Possible congestion
 - Loss probability may be significant
 - Error probability negligible in wired networks
 - Zero blocking probability

B-ISDN
- Intermediate situation
 - Source known (either deterministically or statistically)
 - Packet switching with virtual circuit service
 - May introduce algorithms to control network resources sharing
 - Bit rate and delay negotiable
 - Loss probability negotiable
 - Blocking probability reasonably small
 - Error probability negligible

- QoS dependent from other user behavior and from algorithms used to manage network resources
- Trade network utilization and user satisfaction

Quality of service

Design problem
- Given:
 - Network topology (nodes, link speed)
 - Traffic characterization
 - User behaviour
 - Jointly obtain:
 - Guaranteed QoS for each user connection
 - High network utilization

- Without the objective of high network utilization, the problem becomes trivial
 - overprovisioning (power line or water distribution network)
Design to obtain QoS

- Different time scale (with different level of complexity)
- Network design and planning (resource deployment)
 - On the basis of traffic estimates and cost constraints
 - Exploits routing criteria and traffic engineering
- Network management (running a network)
 - Measurements
 - Fault management (protection and restoration)
 - Includes re-design and re-planning
- Connection management
- Data unit transport

Our definition of QoS

- Assume that a network has been designed and is properly managed
 - Available resources are given
- Mainly study algorithms operating at the following time-scale:
 - Connection management
 - Data unit transport
- Also named traffic control problem
- Must define what is meant by connection. Also named data classification problem.
- Two different traffic control principles:
 - Preventive control: mainly executed at network ingress, with fairly tight traffic control to avoid congestion insurgence in the network
 - Reactive control: react when congestion situation occur, to reduce or eliminate congestion negative effects

Traffic control: essential elements

- Connection oriented network
- User-network service interface
 - Traffic characterization
 - QoS negotiation
- Resource allocation (bit rate and buffer)
- Algorithms for traffic control
 - CAC (Connection Admission Control) and routing
 - Scheduling and buffer management (allocation, discard) in switching nodes
 - Conformance verification (policing or UPC: Usage Parameter Control)
 - Traffic shaping to adapt it to a given model
 - Congestion control

Traffic control: connection oriented network

- The connection oriented paradigm permits to know which are the network elements over which traffic control algorithms must be executed (path known)
 - Circuit switching
 - Packet switching with virtual circuit service
- If high utilization is a major objective:
 - Packet switching
- As such, the most suited switching technique to obtain QoS is packet switching with virtual circuit service

Traffic control: user-network service interface

- The capability to control the network increases with the knowledge of user traffic. Limiting factor is the complexity.
- Over the service interface
 - Traffic characterization
 - QoS parameters negotiation
- Can be defined on a call basis or on a contract basis
- POTS: implicit, on a contract basis
- Internet: not existing
- Frame relay: negotiable, normally on a contract basis
- B-ISDN: negotiable with traffic contract on both contract and call basis
- Internet extended to support QoS: negotiable through a SLA (Service Level Agreement) mainly on a contract basis

Traffic control: resource allocation

- Main resources:
 - Bit rate over transmission links
 - Buffer
- Resources can be allocated
 - On a contract basis (booking)
 - On a call basis
 - Packet by packet
- Allocation
 - Exclusive (dedicated resource)
 - Shared
Introduction to QoS

Algorithms: CAC and routing

- **Routing**
 - QoS based path selection to router a connection

- **CAC**
 - Determine whether to accept a connection or not, depending on
 - The path chosen by the routing algorithm
 - Traffic characterization
 - QoS requests
 - Network status

- **Constraints**
 - It is not acceptable to destroy or even reduce the quality of service guaranteed to already accepted connections
 - Can be relinquished
 - Connection must be refused to avoid network overload or congestion
 - Preventive control (but can become reactive)

Algorithms: scheduling and buffer management

- **Scheduling**
 - Choice of the data unit to be transmitted among data unit stored in the switch

- **Buffer management**
 - Allocation (partial/total, exclusive/shared) of memories in the switch
 - Dropping policies
 - Mandatory in an heterogeneous environment to support different QoS requests
 - FIFO (First In First Out) or FCFS (First Came First Served) policy with drop-tail discard is optimal in a homogeneous environment
 - Counter for less than 10 pieces at supermarket
 - Preventive and reactive

Algorithms: policing e shaping

- **Policing (traffic verification)**
 - Network control of user behavior to guarantee conformance to traffic characterization

- **Shaping (traffic conditioning)**
 - User/network adaptation of data traffic to make it conformant to a given characterization
 - Mandatory to control user honesty and to adapt traffic which is difficult to generate as conformant a priori

- **Where algorithms must be executed?**
 - Only at network access and internally to the network
 - Multiplexing point modify traffic shape
 - Both at network access and internally to the network

- **Mainly preventive, but they can become reactive if QoS level may change over time**

Algorithms: congestion control

- **Congestion**
 - Traffic excess over a given channel (link)

- **Can occur due to**
 - Short term traffic variability
 - Allocation policies that share resources to increase network utilization

- **Congestion effects:**
 - Buffer occupancy increase
 - Delay increase
 - Data loss
 - Needed to obtain high link utilization

- **Must execute at network edge, within the network or…?**

- **Reactive**