Frame Relay

Andrea Bianco
Telecommunication Network Group
firstname.lastname@polito.it
http://www.telematica.polito.it/

Frame Relay: characteristics

- Packet switching with virtual circuit service
 - Label named DLCI: Data Link Connection Identifier
 - Virtual circuits are bi-directional
- "Connection" is associated with the virtual circuit
- No error control (DL-control is not used even at edge)
- No flow control
- LAP-F protocol
- Packet size:
 - variable up to 4096 byte
- Mainly thought for data traffic

LAPF packet

- ADDRESS field contains the DLCI (Data Link Connection Identifier) and some additional bits

ADDRESS field

- DLCI: Data Link Connection Identifier
- FECN/BECN: forward/backward explicit congestion notification
- DE: discard eligibility
- C/R: command/response
- D/C: DLCI or DL-CORE
- EA: extension bit

Frame Relay: user-network interface

- Negotiable parameters, a-priori, on a contract basis:
 - CIR (Committed Information Rate) [bit/s]
 - CBS (Committed Burst Size) [bit]
 - EBS (Excess Burst Size) [bit]
- CIR: guaranteed bit rate (throughput)
- CBS: amount of data the network is willing to accept over a measurement period T
- EBS: amount of excess data the network may transfer over T. Packets are marked with the DE bit set to 1
- Data exceeding CBS+EBS are directly discarded at network access

Frame Relay: measurement interval T definition

<table>
<thead>
<tr>
<th>CIR</th>
<th>CBS</th>
<th>EBS</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0</td>
<td>> 0</td>
<td>> 0</td>
<td>CBS/CIR</td>
</tr>
<tr>
<td>> 0</td>
<td>> 0</td>
<td>= 0</td>
<td>CBS/CIR</td>
</tr>
<tr>
<td>= 0</td>
<td>= 0</td>
<td>> 0</td>
<td>EBS/Access Rate</td>
</tr>
</tbody>
</table>
QoS in Frame relay networks

Frame Relay: resource allocation

\[\sum_{A,j} \text{CIR}_{A,j} \leq \text{ACCESS RATE}_A \]
– where \(A,j \) refers to the VC from \(A \) to \(j \)

Frame Relay: resource allocation

\[\sum_{A,j} \text{CIR}_{A,j} \leq \text{ACCESS RATE}_A \]
– where \(A,j \) refers to the VC from \(A \) to \(j \)

Frame Relay: resource allocation

\[\sum_{A,j} \text{CIR}_{A,j} \leq \text{ACCESS RATE}_A \]
– where \(A,j \) refers to the VC from \(A \) to \(j \)

Frame Relay: resource allocation

\[\sum_{A,j} \text{CIR}_{A,j} \leq \text{ACCESS RATE}_A \]
– where \(A,j \) refers to the VC from \(A \) to \(j \)

Frame Relay: resource allocation

\[\sum_{A,j} \text{CIR}_{A,j} \leq \text{ACCESS RATE}_A \]
– where \(A,j \) refers to the VC from \(A \) to \(j \)

Frame Relay: resource allocation

\[\sum_{A,j} \text{CIR}_{A,j} \leq \text{ACCESS RATE}_A \]
– where \(A,j \) refers to the VC from \(A \) to \(j \)
QoS in Frame relay networks

Frame Relay: resource allocation

\[\sum_{i,j} \text{CIR}_{i,j} \leq \text{LINK_SPEED} \quad \forall \text{ links} \]

- where \(i,j \) refers to the VC from \(i \) to \(j \)

Frame Relay: congestion

- Summation of CIR over all virtual circuits on each link may exceed the available bit rate over a link (overbooking)
 - Creates congestion, potentially a long-term congestion
- Traffic burstiness may create congestion (typically short term congestion)
- Need to control congestion?
 - X.25 (ISDN) may exploit link-by-link (hop-by-hop) flow control (and internal switch backpressure) to control (un-fairly) congestion
 - In Internet the congestion control is delegated to hosts running TCP, the network simply drops packets
 - Frame relay, which does not implement flow control, uses explicit signaling from network nodes to signal congestion to users through FECN and BECN bits

Frame Relay: algorithms

- Policing, or conformance verification
 - Leaky Bucket
 - Token Bucket
- Congestion control
 - backward
 - forward

Conformance verification

- Basic idea
 - If a packet reaches network access and is conformant to the CBS constraint over \(T \), it is transmitted at high priority with \(\text{DE}=0 \)
 - If a packet reaches network access and is not conformant to CBS over \(T \) but it is conformant to CBS+EBS over \(T \), it is transmitted at low priority with \(\text{DE}=1 \)
 - If a packet reaches network access and is not conformant to CBS+EBS over \(T \), it is discarded
- Same algorithms can be used to do shaping
 - Traffic adaptation to make it conformant
 - Delay instead of marking/dropping
QoS in Frame relay networks

Leaky Bucket

- As a traffic regulator
 - User traffic entering the buffer is transmitted at a maximum CBR rate equal to \(\rho \)
 - User traffic exceeding the buffer size \(B \) is dropped
 - Any source becomes a CBR source at rate \(\rho \)
- If packet size is fixed
- When using to do conformance verification, if packets arrives earlier than they should be, with respect to \(\rho \), drop it

Token Bucket

- Tokens are generated at a fixed rate \(\rho \)
- A maximum number of \(\beta \) tokens can be stored in the token buffer
- Permits some burstiness
- User data are sent over the network only if there is a token available in the token buffer
- Maximum amount of data send over a period \(T \) is \(\leq T \rho + \beta \)
- The source becomes a VBR source with
 - \(B_P = \rho \)
 - \(B_P = \) access rate
 - Burst duration \(= \beta \)
- Access to the network can be further regulated with a cascading leaky bucket to limit \(B_P \)

Token Bucket + Leaky Bucket

- Regulates average rate \(\rho_2 \), peak rate \(\rho_1 \), burst duration \(\beta \)

All packets conformant to CBS

- Discard
- CBS
- CBS+EBS
- Access rate
- DE=1
- DE=0
- T_0
- T_0 + T
- Frame arrival
- Time
QoS in Frame relay networks

One packet at low priority

- Discard
- CBS + EBS
- CBS
- Access rate
- DE = 1
- DE = 0
- Frame arrival
- Time

One packet discarded

- Discard
- CBS + EBS
- CBS
- Access rate
- DE = 1
- DE = 0
- Frame arrival
- Time

Measurement problems

- Measuring a rate of an asynchronous packet flow may be complex
- Simple solution:
 - Measure over fixed length intervals
 - When does the interval starts? Border effect between adjacent intervals?

Measurements problems

- Better solution is a temporal sliding window of W seconds
 - When a packet arrives, the rate is measured accounting for the amount of byte received during the last W seconds
 - Difficult to implement (necessary to remember packet arrival times)
 - It is possible to exploit a fluid approximation
 - New rate R estimate at each packet arrival
 - At packet arrival, we assume that the flow has transmitted R*W byte in the last W seconds and the estimate of R is updated

Congestion control

- Flow control is not supported in Frame Relay
- The network is unprotected against congestion
 - Only protection mechanism is packet discarding
- Congestion should not occur if sources are sending at CIR!
- When a switch (network node) establishes that congestion has occurred, to signal congestion it sets one among two bits:
 - FECN (Forward technique)
 - BECN (Backward technique)

Congestion control: goals

- Avoid packet loss
- Constraints?
 - Maximum network utilization
 - Fairness
 - Often in contrast
- Simple case: all flows are alike
 - Fairness means to provide the same set of resources to all flows
 - Over a single bottleneck the problem is trivial
 - Network wide problem

Pag. 5
QoS in Frame relay networks

Max-min fairness

- One possible definition of fairness
 - A bandwidth allocation is defined as max-min if
 - It maximizes the bandwidth allocation to flows who receive the minimum allocation
 - Property:
 - A max-min allocation is such that, to increase the bandwidth allocated to another flow which is already a smaller or equal bandwidth
 - In other words, no bandwidth increase can be obtained without penalizing flows already receiving a smaller allocation
 - A max-min allocation cannot be obtained with local assignments
 - A global network view is needed

Max-min fairness: algorithm

- Given: topology, link capacity, flows and flow routing
- 1) The algorithm starts with a 0 allocation to all flows, each flow is marked as unsatisfied
- 2) The allocation of all unsatisfied flows is increased by the same, small, quantity, until a bottleneck link is saturated
- 3) All bottlenecked flows are saturated, thus, cannot receive a larger allocation
 - Bottlenecked flows are marked as satisfied
- 4) Goto 2, until all flows are bottlenecked and satisfied
 - Must re-run for any topology or flow modification

Max-min fairness: example

- Problem: find a fair bandwidth allocation to flows, according to the max-min paradigm
- Solution: fair max-min allocation
 - S1: 45.25 Mbps
 - S2: 20.75 Mbps
 - S3: 17 Mbps
 - S4: 17 Mbps
 - S5: 37.75 Mbps
 - S6: 20.75 Mbps
 - S7: 20.75 Mbps
 - S8: 20.75 Mbps

Forward congestion

- When a switch detects congestion, it sets the FECN bit to 1 on all arriving packets sharing the congested buffer
- Congestion signaled to all congested VCs
- When the congestion indication reaches the receiver, it is redirected to the transmitter on a data flow traveling in the opposite direction
- The transmitter reduces the transmission speed according to a standardized algorithm
- Properties:
 - Relatively slow
 - Simple to implement
 - No additional traffic is created, if there is a data flow from receiver to transmitter (normally at least ACKs are sent)
QoS in Frame relay networks

Backward congestion

- When a switch detects congestion, it sets the BECN bit to 1 on all packets belonging to congested VCs
 - These packets are not stored in the congested buffer
- Ad-hoc signaling packets may be generated by the switch if no data traffic is flowing in the opposite direction
- The transmitter reduces the transmission speed according to a standardized algorithm when it detects packets with BECN=1
- Properties:
 - Relatively fast
 - Complex: need to store a list of congested DLCI on the forward path and to wait (or create after a timeout) packets with the proper DLCI on the backward path

Source behaviour: FECN

- Measuring interval $\delta = 2\text{RTT}$
- Rate based transmitter:
 - $R_{\text{new}} = CIR$
 - If $\text{FECN}_n > \text{FECN}_0$:
 - $R_{\text{new}} = 0.875R_{\text{old}}$
 - If $\text{FECN}_n = \text{FECN}_0$:
 - $R_{\text{new}} = R_{\text{old}}$
 - If not transmitting for T, restart from R_{INITIAL}
- Window based transmitter:
 - $W_{\text{new}} = W_{\text{old}} + 1$
 - If $\text{FECN}_n > \text{FECN}_0$:
 - $W_{\text{new}} = W_{\text{old}} + 1$
 - If $\text{FECN}_n < \text{FECN}_0$:
 - $W_{\text{new}} = W_{\text{old}}$

Source behaviour: BECN

- The BECN technique is based on the idea that congestion phenomena are relatively slow
- Transmitter
 - Start transmitting at a speed equal to CIR
 - Computes the percentage of LAP-F frames received with a BECN bit set to 1 (FECN_1) over a pre-determined time interval
 - If FECN_1 is $>50\%$, the emission rate is reduced
 - If FECN_1 is $<50\%$, the emission rate is incremented

Congestion control: issues

- How to detect congestion?
 - Measure ingress flow speed in each buffer
 - Over which time interval?
 - Worth complexity given the binary feedback available?
 - Occupancy derivative:
 - Over a pre-determined time interval over which evaluates the derivative
 - Occupancy derivative:
 - Fast, but unreliable
 - Threshold value?
 - Relatively fast
 - Close to zero occupancy to exploit most of the buffer size
 - More precise than occupancy alone
 - More stable, but slower in reaction
 - How the window size should be determined?
 - Typically exploits some hysteresis to avoid switching between congested/non-congested states
 - More precise than occupancy alone
 - Connections with shorter RTTs react faster
 - Both when increasing and decreasing rate
 - When congestion is detected (set up congestion bit in the header)
 - Operate on packet reaching the buffer or leaving the buffer?
 - Over a flow basis or on traffic aggregate?
Congestion control: issues

- Buffer sizing?
 - Buffer above threshold should increase proportionally to
 - Number of connections involved in congestion
 - Connection RTTs
 - Need to buffer in-flight packets
 - Connection rate
- Always pay attention to
 - The scenarios in which algorithms are compared
 - Scenario validation
 - Parameter
 - Difficulty in properly setting parameters
 - Choosing among values that happen?
 - Algorithms that handle extreme parameter values
 - Algorithm complexity w.r.t. performance gain
- All parameters (threshold, measurement window, buffer size) could be
 - Set off-line or modified at run time
 - Run-time modification is worth the effort?