QoS routing and CAC (Connection Admission Control)

Andrea Bianco
Telecommunication Network Group
firstname.lastname@polito.it
http://www.telematica.polito.it/

QoS Issues in Telecommunication Networks

Preventive traffic control technique (in principle it can become reactive)

Permits to determine whether to accept or not a new incoming call:
- QoS routing selects a set (possibly one) of tentative paths
- CAC checks whether enough resources are available over each link of each path
- Resources are allocated to guarantee QoS

The call is accepted if there are enough network resources to:
- Satisfy the requested QoS
- With the constraint of keeping at the same level the QoS offered to already accepted calls

Can be applied to unicast and multicast calls:
- Multicast calls are routed over a tree rooted at the source and covering all receivers

Call definition?
- In ATM, each VPI/VCI
- In Frame Relay each DLCI
- In Internet? Flow identification problem

QoS routing

Network modeled as a graph G(V,E)
- Nodes represent switches, routers
- Edges represent communication links

Traditional routing problem
- Call request from user a to user b (or to a set of users B)
- Costs associated with edges
- Find over G a path (tree) that minimize costs to route the call from a to b (or B)
- If all edges have the same cost, shortest path optimizes network performance

QoS routing problem
- Call request from user a to user b (or to a set of users B) with a given set of QoS requirements
- Nodes may have a state related to QoS metrics
- Edges have a state, related to QoS metrics, associated
- Find over G a feasible path (tree)
- It must have enough residual resources to satisfy call QoS constraints
- Among several feasible paths, it may choose the one which minimizes cost
QoS routing

- Difficult problem
 - QoS constraints may be very diverse
 - Additive constraints (hop count, delay)
 - Multiplicative constraints (loss ratio)
 - Concave constraints (bit rate)
 - Multiple constraints often make the QoS routing problem NP-hard
- Integration with best-effort traffic
 - QoS traffic not affected, but best effort may suffer
 - Network state change dynamically
 - Difficult to gather up-to-date state information
 - Performance may degrade dramatically if state information outdated

State information

- Link state may be a triple
 - Bandwidth, Delay, Cost
- Node state may simply be a combination of its link state
 - CPU bandwidth may be taken into account
- Local state measured and kept by each node
- Global state exchanged through link-state or distance vector protocols
- Scalability may be achieved by information aggregation, exploiting the hierarchical structure of the network

Hierarchical network model

Unicast (Multicast) QoS routing

- Unicast (Multicast) QoS routing definition
- Given
 - A source node s
 - A destination node d (set of destinations R)
 - A set of QoS constraints C
 - Possibly an optimization goal
- Find
 - The best feasible path from s to d (tree covering s and all nodes in R) which satisfies C
- Constraint
 - Algorithmic complexity
- Multicast routing is a generalization of unicast routing

Unicast QoS routing classification

- Link-Optimization (LO) or Link-Constrained (LC)
 - The state of a path is determined by the bottleneck link
 - Residual bandwidth and residual buffer space
 - Min-max operations on non additive metrics
 - Optimization
 - Ex: find a path that has the largest bandwidth on a bottleneck link
 - Constrained
 - Ex: find a path whose bottleneck link is above a given value
 - Link-constrained can be mapped to link optimization
- Path-Optimization (PO) or Path-Constrained (PC)
 - The state of the path is determined by the combined state over all links of the path
 - Delay
 - Combinatorial operation over additive metrics
 - Optimization
 - Ex: find a path whose total cost is minimum
 - Constrained
 - Ex: find a path whose delay is bounded by a given value
Composite unicast routing problems

- Elementary routing problems can be combined to create composite routing problems
- LC-PO problem
 - Bandwidth constrained least delay routing
 - Can be solved by a shortest path algorithm on the graph obtained by removing links violating the bandwidth constraint
- LOLC, LCPO, LCPC, PCLO can be solved in polynomial time
- PCPO (find the least cost path with bounded delay) and Multi-Path Constrained (path with both bounded delay and jitter) are NP if:
 - Two metrics are independent
 - Measured as real numbers or unbounded integers

QoS routing strategies

- Classification according to how state information is maintained and how the search of a feasible path is performed
- Source routing
- Distributed routing
- Hierarchical routing

QoS routing strategies

- Source routing
 - Each node
 - Maintains the complete global state
 - Network topology, stats, information
 - Computes locally a feasible path
 - Sends a control message along the selected path to inform intermediate nodes of their precedent and successor nodes
- Distributed routing
 - Path computed through a distributed computation
 - Each node keeps a partial (global) state
 - Routing done on a hop-by-hop basis
- Hierarchical routing
 - Nodes clustered into groups, further clustered in higher-level groups recursively, creating a multi-level hierarchy
 - Each physical node maintains an aggregated global state
 - Detailed information about the nodes in the same cluster and aggregated state information about the other groups
 - Normally used with a source routing approach
QoS routing strategies

- **Source routing**
 - Centralized solution
 - Avoids problem with distributed solutions (deadlock, distributed terminations, loops)
 - Large communication overhead to update state
 - Large computation overhead
- **Distributed routing**
 - More scalable
 - Parallel search possible
 - Loop due to inconsistencies
 - Large communication overhead
- **Hierarchical routing**
 - Often used in conjunction with source routing
 - Routing computation shared by many nodes (source and border nodes)
 - Adds imprecision due to aggregation

Hierarchical aggregation

Unicast QoS routing: examples

- Examples of proposed distributed algorithms
 - Widest Path
 - Path with the maximum bottleneck bandwidth
 - Shortest Path
 - Path with smallest delay
 - Shortest-Widest Path
 - Among widest paths, select the one with smallest delay
 - Widest-Shortest Path
 - Among shortest paths, select the one with the maximum bottleneck bandwidth
 - Delay constrained least-cost routing
 - Each node keeps a cost and a delay vector for the best next hop for any destination
 - A control message is sent from the source to construct a delay-constrained path
 - Any node can select one of two alternative links (least cost path or the least delay path)
 - The least cost path has priority as long as the delay constraint is not violated
 - Loops detected if control messages were twice
 - Roll back until reaching a node who chooses the least cost path
Unicast QoS routing: examples

- Examples of proposed source routing algorithms
 - Bandwidth-delay constrained
 - All links with not enough bandwidth are eliminated, then the shortest path is searched for
 - Transform delay, jitter and buffer space bounds in bandwidth bounds when traffic is token bucket controlled and nodes are running proper scheduling algorithms

QoS routing: issues

- For high loads, maximum throughput is provided by the minimum hop
- For medium-low loads algorithm performance may depend on network topology
- Some algorithms may be implemented only in a centralized way
 - Hop-by-hop decisions may be sub-optimal

Multicast QoS routing classification

- Similar to the unicast QoS case, but optimization or constraints must be applied to the full tree
 - Link optimization or constrained
 - Tree optimization or constrained
- Steiner tree problem (tree optimization) is to find the least-cost tree
 - Tree covering all destinations with the minimum total cost over all links
 - It is NP-hard
 - If destination set includes all network nodes, the Steiner tree problem reduces to the minimum spanning tree problem which can be solved in polynomial time
Composite multicast routing problems

- Elementary multicast routing problems can be combined to create composite routing problems
- LCLO, MLC (Multi-link constrained: Bandwidth buffer-constrained), LCTC, TCLO can be solved in polynomial time
- LCTO, TCTO, and MTC (Multi-tree constrained: delay-delay jitter constrained) are NP if
 - Two metrics are independent
 - Measured as real numbers or unbounded integers

Issues in multicast traffic

- Multicast trees are dynamic
 - User leave
 - Use join
 - Maintain or update the tree while the call is on
- Receiver heterogeneity
 - Allocate for the most demanding user
 - Hierarchical coding at the source
- ACK explosion for reliable multicast

CAC algorithm

- INPUT DATA
 - Traffic characterization at network ingress
 - Call QoS requirements
 - Path(s) selected by (QoS) routing algorithms
 - Network status (available bit rate, buffer occupancy, ...) and data traffic already accepted in the network
- OUTPUT
 - Accept (if QoS requirements can be satisfied) or refuse the call
- CONSTRAINTS
 - Not violate QoS requirements of already accepted calls
QoS routing and CAC

CAC algorithm

- Algorithm executed
 - In all network nodes through which the call is routed
- It is possible to envision QoS parameters re-negotiation in case of negative answer
- Main CAC methodologies
 - Parameter based admission control
 - Peak rate, average rate
 - Worst case analysis
 - Equivalent bandwidth
 - Measurement based admission control

Main CAC methodologies

- Parameter based admission control
 - Peak rate, average rate
 - Worst case analysis
 - Equivalent bandwidth
- Measurement based admission control

Peak rate CAC

- Peak rate allocation
 - Call k is accepted if available bandwidth is large than the peak bandwidth of call k:
 \[B_P^{(k)} \leq C - \sum_{i \in acc} B_P^{(i)} \]
- Rationale
 - Worst case dimensioning
- CBR traffic
 - Bit rate guarantees
 - Delay guarantees as a function of the number of accepted calls
 - Zero losses if buffer size proportional to number of accepted calls
- VBR traffic
 - Same guarantees as of CBR traffic
 - Link utilization proportional to:
 \[\frac{B_M}{B_P} \]

Peak rate CAC

- Simple
- Does not exploit potential benefits of statistical multiplexing
- Very good QoS guarantees
- Transmission link capacity may be largely under-utilized for VBR traffic
- Network behaves very similarly to circuit switched networks
 - Bit rate guaranteed, loss probability negligible or null
 - Data transmission is not synchronous
 - Delay guarantee depends on other user behavior
- Many multiplexing stages could increase \(B_P \) over a short time interval, thus partly worsening QoS guarantees
Average rate CAC

- **Average rate allocation**
 - Call k accepted if:
 \[B_M^{(k)} \leq C - \sum_{i \in \text{acc}} B_M^{(i)} \]

- **Rationale**
 - Over a long period of time the network is never overloaded

Worst-case analysis: examples

- Suppose a source is constrained by a token bucket
- Can accept calls when
 - The summation of token rates is smaller than link capacity
 - The summation of token depth is less than available buffer space

- **Properties**
 - Zero losses
 - Delay guarantees depending on number of calls and token depth
 - Low utilization

- If used scheduler is WFQ
 - Can allocate bandwidth to
 - Satisfy the worst case delay along the path
 - Bound the buffer size to avoid packet losses
Example of statistical guarantees

- 10 identical sources with rate 1.0
- Each source active with probability 0.1
- What is the probability of overloading a link of capacity 8.0?
- If sources are independent, probability of having n active sources
 \[
 \binom{10}{n} 0.1^n 0.9^{10-n}
 \]
- Probability of overloading smaller than 10^{-6}
- By allowing a very small overflow probability, resource requirements are reduced by 20%

Equivalent bandwidth CAC

- DATA:
 - Traffic characterization (peak rate, average rate, burst duration,...)
 - QoS requirements (mainly cell loss)
 - Traffic behavior of other calls
- OUTPUT:
 - Equivalent bandwidth (bandwidth needed to satisfy call QoS requirements)
 - Call k is accepted over a link with capacity C if:
 \[
 B_{eq}^{(k)} \leq C - \sum_{i \text{ acc}} B_{eq}^{(i)}
 \]

How to compute equivalent bandwidth: traffic model

- To compute B_{eq} a traffic model must be used:
 - Define the source stochastic behavior
 - Emulate (or solve) the system under study, which comprises all previously accepted calls plus the new call
 - Determine the bit rate that should be allocated to the new call to satisfy the QoS needs
- Several models were proposed
 - Some take into account even buffer size
 - B_{eq} often assumes a value ranging between B_M and B_P
 - B_{eq} can be larger than B_P if delay constraints are very tight
 - B_{eq} is never smaller that B_M
Equivalent bandwidth: an example

• Suppose a fluid approximation
 – Buffer size B
 – Buffer is drained at a constant rate e
 – Worst case delay B/e
 – The equivalent bandwidth is the value of e that makes the loss probability smaller than a given value
 – Jointly provides bandwidth, loss and delay guarantees

Equivalent Bandwidth CAC

• Allows to compute a service rate adequate to guarantee call QoS
 – This rate can be used to allocate bit rate resources within nodes
• The method works correctly if the traffic model is realistic, i.e. if the traffic generated by the call is similar to the one defined by the model
• Difficult to extend to sequence of links
 – Multiplexing effect modifies traffic shape
• Can be computation intensive to solve the model on-line, i.e. for each new incoming call

Equivalent Bandwidth CAC

• As an alternative, it is possible to define a (small) set of traffic classes, where each class is identified by the same
 – Traffic characterization
 – QoS requests
• If the traffic classes are known a-priori, it is possible to pre-compute (off-line)
 • B_{eq} required by each call of each class, therefore the number of calls acceptable on each link for each class
 • Since it is off-line, it is also possible to use more complex (and hopefully more efficient) models
Equivalent Bandwidth

- The off-line approach constraints user traffic generation and QoS requirements to simplify the on-line CAC procedure
- Traffic classes are derived from applications run by the users
 - Applications development much faster than network standard modification
- Mix the off-line and the on-line approach?
 - Not easy
 - Can be done by statically partitioning link bandwidth
 - Create two virtual infrastructures and manage them separately

Measurement based CAC

- Normally used with a very simple traffic characterization
 - E.g., call peak rate \(B_P \)
- Basic idea
 - Measure the traffic load on each link in real time
 - This is normally done anyway in network devices
- Note that after acceptance, calls are accounted for their real traffic, not on the basis of declared parameters
- Useful if traffic characterization parameters or network status are unknown or known with a large error
- Normally leads to high link utilization
 - Difficult to guarantee QoS

Measurement based CAC

- Disadvantages/problems:
 - Measurement parameter setting (e.g., measurement window duration)
 - Window too large implies more stable but less reactive estimate
 - Window too short may provide unreliable estimate
 - Implicit assumption that accepted call behavior is similar during a measurement interval
 - Measurement errors
 - If too calls arrive during a measurement period
 - Many calls are rejected since they are accepted on the basis of their peak rate
 - Useful for CAC only, but no information on the bit rate that should be allocated to calls to guarantee QoS
 - Very difficult to predict call QoS a priori
CAC issues

- Un-fairness for calls requiring higher bit rate in saturated conditions
 - Resource partitioning
- Difficult to extend algorithms to several consecutive links
 - Users are interested in end to end quality, non in single hop behavior
- Renegotiation may be interesting?

References